近世代数——群笔记(1)

lemma 1

(Euclid’s Lemma) If a ∣ b c a|bc abc and ( a , b ) = 1 (a,b)=1 (a,b)=1, then a ∣ c a|c ac

Proof: Since ( a , b ) = 1 (a,b)=1 (a,b)=1, there exists s , t ∈ N s,t\in\mathbb N s,tN such that a s + b t = 1 as+bt=1 as+bt=1. Hence, c = c ⋅ 1 = c ( a s + b t ) = a ( c s ) + t ( b c ) c=c\cdot 1=c(as+bt)=a(cs)+t(bc) c=c1=c(as+bt)=a(cs)+t(bc). Since a ∣ a ( c s ) , a ∣ ( b c ) a|a(cs),a|(bc) aa(cs),a(bc), a ∣ c a|c ac.

lemma 2

If ( a , b ) = 1 (a,b)=1 (a,b)=1, then the equation a x ≡ c   m o d   b ax\equiv c ~\rm mod ~b axc mod b is solvable.

Proof: Since ( a , b ) = 1 (a,b)=1 (a,b)=1, ∃ s , t ∈ N \exist s,t\in \mathbb N s,tN, s.t. a s + b x = 1 as+bx=1 as+bx=1. Hence, a s c + b x c = c , asc+bxc=c, asc+bxc=c, b ∣ ( a ( s c ) − c ) b|(a(sc)-c) b(a(sc)c), that is s c sc sc is a solution. In fact, all solutions are A : = { s c + b k ∣ k ∈ Z } A:=\{sc+bk|k\in\mathbb Z\} A:={sc+bkkZ}. Set B B B are the set of all solutions of the equation. It’s clear that A ⊂ B A\subset B AB. Next we will show B ⊂ A B\subset A BA. If x 0 x_0 x0 is a solution, then we get a x 0 ≡ c   m o d   b ax_0\equiv c~\rm mod~b ax0c mod b, b ∣ ( a x 0 − c ) b|(ax_0-c) b(ax0c), hence b ∣ ( a x 0 − c ) + ( a s − c ) ⇒ b ∣ a ( x 0 − s ) b|(ax_0-c)+(as-c)\Rightarrow b|a(x_0-s) b(ax0c)+(asc)ba(x0s). Since ( b , a ) = 1 (b,a)=1 (b,a)=1, b ∣ ( x 0 − s ) b|(x_0-s) b(x0s), by Euclid’s Lemma. There exists some k 0 k_0 k0 such that s + b k 0 = x 0 s+bk_0=x_0 s+bk0=x0, hence B ⊂ A B\subset A BA, B = A B=A B=A.

Chinese Reminder’s Theorem

If ( m , m ′ ) = 1 (m,m')=1 (m,m)=1, then x ≡ a   m o d   m x\equiv a ~\rm mod~m xa mod m and x ≡ b   m o d   m ′ x\equiv b ~\rm mod~m' xb mod m have solutions.

Proof: By lemma 2, the equation x ≡ a   m o d   m x\equiv a~\rm mod~m xa mod m has solution k m + a ,   k ∈ Z km+a,~k\in\mathbb Z km+a, kZ. Insititude k m + a km+a km+a into x ≡ b   m o d   m ′ x\equiv b~\rm mod~m' xb mod m, we get k m + a ≡ b   m o d   m ′ km+a\equiv b~\rm mod~m' km+ab mod m, m k ≡ b − a   m o d   m ′ mk\equiv b-a~\rm mod~m' mkba mod m for some k k k. Since ( m , m ′ ) = 1 (m,m')=1 (m,m)=1, ∃ k 0 ∈ Z \exists k_0\in\mathbb Z k0Z, s.t. m k 0 ≡ b − a   m o d   m ′ mk_0\equiv b-a~\rm mod~m' mk0ba mod m. So x 0 = m k 0 + a x_0=mk_0+a x0=mk0+a is a solution of equations.
Assume that y y y is also a solution of equation, then { y ≡ a   m o d   m y ≡ b   m o d   m ′ \begin{cases}y\equiv a~\rm mod ~m\\y\equiv b~\rm mod ~m'\end{cases} {ya mod myb mod m, hence { y − x 0 ≡ 0   m o d   m y − x 0 ≡ 0   m o d   m ′ \begin{cases}y-x_0\equiv 0~\rm mod ~m\\y-x_0\equiv 0~\rm mod ~m'\end{cases} {yx00 mod myx00 mod m
Since m ∣ ( y − x 0 ) ,   m ′ ∣ ( y − x 0 ) ,   ( m , m ′ ) = 1 m|(y-x_0),~m'|(y-x_0),~(m,m')=1 m(yx0), m(yx0), (m,m)=1, we have m m ′ ∣ ( y − x 0 ) ( ∗ ) mm'|(y-x_0)(*) mm(yx0)().
So ∃ l ∈ Z \exists l\in\mathbb Z lZ, y − x 0 = l m m ′ ,   y = x 0 + l m m ′ y-x_0=lmm',~y=x_0+lmm' yx0=lmm, y=x0+lmm. Set X : = { s o l u t i o n s   o f   e q u a t i o n s } X:=\{\rm solutions~of~equations\} X:={solutions of equations}, Y : = { x 0 + m m ′ l ∣ l ∈ Z } Y:=\{x_0+mm'l|l\in\mathbb Z\} Y:={x0+mmllZ}. Now we have got X ⊂ Y X\subset Y XY, next we show Y ⊂ X Y\subset X YX. ∀ x 0 + m m ′ l \forall x_0+mm'l x0+mml, x 0 + m m ′ l ≡ x 0   m o d   m x_0+mm'l\equiv x_0~\rm mod~m x0+mmlx0 mod m, x 0 + m m ′ l ≡ x 0   m o d   m ′ x_0+mm'l\equiv x_0~\rm mod~m' x0+mmlx0 mod m. Hence, x 0 + m m ′ l x_0+mm'l x0+mml is also a solution for any l ∈ Z l\in\mathbb Z lZ, Y ⊂ X Y\subset X YX, furthermore X = Y X=Y X=Y. Hence the solution of equations is { x 0 + m m ′ l ∣ l ∈ Z } \{x_0+mm'l|l\in\mathbb Z\} {x0+mmllZ}.

proof of ( ∗ ) (*) (): For m ∣ ( y − x 0 ) m|(y-x_0) m(yx0), ∃ u ∈ Z \exists u\in\mathbb Z uZ, s.t. y − x 0 = m u y-x_0=mu yx0=mu. Since m ′ ∣ ( y − x 0 ) m'|(y-x_0) m(yx0), m ′ ∣ m u m'|mu mmu. Hence, m ′ ∣ u m'|u mu, by Euclid’s lemma. Hence, m m ′ ∣ m u = y − x 0 mm'|mu=y-x_0 mmmu=yx0.

An application of Chinese Remainder’s Theorem

Chinese Remainder’s Theorem is the key of the proof of the following statement:
If ( m , n ) = 1 (m,n)=1 (m,n)=1, then Z m n ≅ Z m × Z n \mathbb Z_{mn}\cong \mathbb Z_m\times\mathbb Z_n ZmnZm×Zn.
The detail will be ignored. Construct a map ϕ : Z → Z m × Z n , a ↦ ( [ a ] m , [ a ] n ) \phi: \mathbb Z\to \mathbb Z_m\times\mathbb Z_n, a\mapsto([a]_m,[a]_n) ϕ:ZZm×Zn,a([a]m,[a]n). In fact, ϕ \phi ϕ is a bijection. Chinese Remainder’s theorem assures its surjection. ∀ a , b ∈ Z \forall a,b\in\mathbb Z a,bZ, we want to find a x x x such that
{ x ≡ a   m o d   m x ≡ b   m o d   n \begin{cases} x\equiv a~\rm mod ~m\\ x\equiv b~\rm mod ~n \end{cases} {xa mod mxb mod n
Since ( m , n ) = 1 (m,n)=1 (m,n)=1, by Chinese Remainder’s theorem, the equations have solutions, such as x 0 x_0 x0, [ x 0 ] m n ↦ ( [ x 0 ] m , [ x 0 ] n ) = ( [ a ] m , [ b ] n ) [x_0]_{mn}\mapsto([x_0]_m,[x_0]_n)=([a]_m,[b]_n) [x0]mn([x0]m,[x0]n)=([a]m,[b]n).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值