近世代数-群论基础一

近世代数-群论基础一

半群与群

半群:在集合,任意 x , y x,y x,y经过一元运算 x ∘ y x\circ y xy 得到的结果依然是在该集合内的,且满足结合律

幺半群:在半群的基础上引入幺元(单位元)

定理2.1:括号的添加方式(位置)与结果无关

群:每个元素都可逆的幺半群

定义:非空集 G G G按它的二元运算 ∘ \circ ,形成群当且仅当

  • G G G对运算 ∘ \circ 封闭,即 a , b ∈ G ⇒ a ∘ b ∈ G a,b\in G\Rightarrow a\circ b\in G a,bGabG
  • 运算 ∘ \circ 满足结合律
  • 有单位元
  • 每个元都可逆,即 a ∈ G a\in G aG时有 b ∈ G b\in G bG使得 a ∘ b = e = b ∘ a a\circ b=e=b\circ a ab=e=ba

另外,一般把集合 X X X基数记为 ∣ X ∣ |X| X,对于有限集合中基数 ∣ X ∣ |X| X就是 X X X中的元素总个数

若群 G G G中元素有限,则称为有限群,其元素总个数 ∣ G ∣ |G| G称为 G G G,当 ∣ G ∣ = n |G|=n G=n时称 G G Gn阶群

在群的基础上若满足交换律,则称 G G GAbel群或交换群

定理2.3:当半群满足可除性条件,对任何 a , b ∈ G a,b\in G a,bG,方程 a x = b ax=b ax=b y a = b ya=b ya=b G G G中都有解,半群形成群

定理2.4:设 G G G为群,则 G G G中有消去律

当有限半群 G G G中具有消去律,则 G G G必为消去律(特殊地,自然数数集 N N N按加法形成具有消去律的半群不是群)

群的例子

数论的例子

  • Pell方程

G d = { x + y d : x , y ∈ Z 且 x 2 − d y 2 = 1 } G_d=\{x+y\sqrt d:x,y\in \mathbb Z且x^2-dy^2=1\} Gd={x+yd :x,yZx2dy2=1},按数的乘法形成Abel群

线性代数的例子

  • 矩阵

G L n ( R ) = { n 阶 实 方 阵 A : d e t   A ≠ 0 } GL_n(\mathbb R)=\{n阶实方阵A:det~A\neq 0\} GLn(R)={nA:det A=0}以及 S L n ( R ) = { n 阶 实 方 阵 A : d e t   A = 1 } SL_n(\mathbb R)=\{n阶实方阵A:det~A=1\} SLn(R)={nA:det A=1}

按矩阵的乘法形成群;前者称为一般线性群,后者称为特殊线性群

其他

  • 函数

实数区间 I I I上全体连续的实函数按函数加法( f + g f+g f+g x ∈ I x\in I xI处值定义为 f ( x ) + g ( x ) f(x)+g(x) f(x)+g(x))形成Abel群;此时区间 I I I上零函数 O ( x ) = 0 O(x)=0 O(x)=0为连续函数,它是Abel群的加法单位元(零元)

  • 整数加群

任给正整数 m m m

m Z = { m x : x ∈ Z } = { ⋯   , − 2 m , − m , 0 , m , 2 m , ⋯   } m\mathbb Z=\{mx:x\in \mathbb Z\}=\{\cdots,-2m,-m,0,m,2m,\cdots\} mZ={mx:xZ}={,2m,m,0,m,2m,},按整数的加法形成Abel群,整数 0 0 0为其加法单位元;且该群通常叫做整数加群

PS: m m m的倍数可以表示作 m Z m\mathbb{Z} mZ

  • m m m同余关系

a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm)

  • 集合上的等价关系

设非空集合 X X X上的等价关系写作 ∼ \sim ,则该关系满足

自反性: x ∼ x x\sim x xx;对称性: x ∼ y ⇒ y ∼ x x\sim y \Rightarrow y\sim x xyyx;传递性: x ∼ y ∼ z ⇒ x ∼ z x\sim y\sim z\Rightarrow x\sim z xyzxz

等价类 x ∈ X x\in X xX所在的等价类指 { y ∈ X : x ∼ y } \{y\in X:x\sim y\} {yX:xy};不同等价类并集为空

  • Z / m Z \mathbb{Z}/m\mathbb{Z} Z/mZ上的加乘法

m m m同余关系是整数集 Z \mathbb{Z} Z上的等价关系, a ∈ Z a\in \mathbb{Z} aZ所在的等价类为
a ˉ = a + m Z = { x ∈ Z : x ≡ a ( m o d m ) } \bar a = a + m\mathbb{Z} = \{x\in \mathbb{Z}:x\equiv a\pmod m\} aˉ=a+mZ={xZ:xa(modm)}
a a a所在的 m m m剩余类在集合
Z / m Z = { a ˉ = a + m Z : a ∈ Z } = { 0 ˉ , 1 ˉ , ⋯   , m − 1 ‾ } \mathbb{Z}/m\mathbb{Z}=\{\bar{a} = a + m\mathbb{Z}:a\in \mathbb{Z}\} = \{\bar 0 ,\bar 1,\cdots,\overline{m-1}\} Z/mZ={aˉ=a+mZ:aZ}={0ˉ,1ˉ,,m1}
上,定义其加法与乘法为:
a ˉ + b ˉ = a + b ‾ ,   a ˉ b ˉ = a b ‾ \bar a + \bar b = \overline{a+b},~\bar{a}\bar b=\overline{ab} aˉ+bˉ=a+b, aˉbˉ=ab
证明定义的合理性

a , c a,c a,c a ˉ \bar a aˉ剩余类中的元素,而 b , d b,d b,d b ˉ \bar b bˉ剩余类中的元素;则
a ≡ c ( m o d m ) 且 b ≡ d ( m o d m ) ⇒ a + b ≡ c + d ( m o d m ) 且 a b ≡ c d ( m o d m ) a\equiv c\pmod m且b\equiv d\pmod m\\ \Rightarrow a+b\equiv c+d\pmod m且ab\equiv cd \pmod m\\ ac(modm)bd(modm)a+bc+d(modm)abcd(modm)
以此类推,分别遍历 a ˉ \bar a aˉ b ˉ \bar b bˉ中剩余类的所有元素得到以上类似同余式,所以
a + b ‾ = c + d ‾ 且 a b ‾ = c d ‾ \overline{a+b}=\overline{c+d}且\overline{ab}=\overline{cd} a+b=c+dab=cd
以上加乘法满足结合律与交换律

Z / m Z \mathbb{Z}/m\mathbb{Z} Z/mZ按剩余类的加法形成 m m m阶Abel群,加法单元为 0 ˉ = m Z \bar 0=m\mathbb{Z} 0ˉ=mZ

  • 单射与满射(数学表达)

f f f是集合 X X X到集合 Y Y Y的映射,若
f ( x 1 ) = f ( x 2 ) ⇒ x 1 = x 2 f(x_1)=f(x_2)\Rightarrow x_1=x_2 f(x1)=f(x2)x1=x2
则称映射 f : X → Y f:X\rightarrow Y f:XY单射

{ f ( x ) : x ∈ X } = Y \{f(x):x\in X\}=Y {f(x):xX}=Y,则称 f : X → Y f:X\rightarrow Y fXY满射

f : X → Y f:X\rightarrow Y f:XY既是单射又是双射时,称 f f f X X X Y Y Y的双射


对称群

设非空集 X X X到ta自身的双射叫 X X X上的置换,所有 X X X上的置换按照映射的复合构成群,其单位元是 X X X上的单位元为恒等映射 I x : x ↦ x I_x:x\mapsto x Ix:xx;该群称为 X X X上的对称群,记为 S ( X ) S(X) S(X)

对称群中的置换

n n n元集 X = { x 1 , ⋯   , x n } X=\{x_1,\cdots,x_n\} X={x1,,xn}上的一个置换相应于 x 1 , ⋯   , x n x_1,\cdots,x_n x1,,xn的一个全排列;

∣ X ∣ = n |X|=n X=n ∣ S ( X ) ∣ = n ! |S(X)|=n! S(X)=n!;对于正整数 n n n,对称群 S ( { 1 , ⋯   , n } ) S(\{1,\cdots,n\}) S({1,,n})简记成 S n S_n Sn

一般表示作
σ = ( 1 2 3 2 3 1 ) \sigma = \begin{pmatrix} 1&2&3\\ 2&3&1 \end{pmatrix} σ=(122331)
代表着 σ ( 1 ) = 4 , σ ( 3 ) = 6 , ⋯ \sigma(1)=4,\sigma(3)=6,\cdots σ(1)=4,σ(3)=6,

PS: ∣ X ∣ |X| X表示 X X X的阶;恒等映射    ⟺    \iff 单位元

对称群 Groupe symétrique - 知乎 (zhihu.com)


复数的几何形式

Hamilton四元数(四维超复数)
z = a + b i + c j + d k , 其 中 a , b , c , d 为 实 数 z=a+bi+cj+dk,其中a,b,c,d为实数 z=a+bi+cj+dk,a,b,c,d
其乘法的特殊之处

要求 i 2 = j 2 = k 2 = i j k = − 1 i^2=j^2=k^2=ijk=-1 i2=j2=k2=ijk=1,则
i j = k , j k = i , k i = j j i = − k , k j = − i , i k = − j ij=k,jk=i,ki=j\\ ji=-k,kj=-i,ik=-j ij=k,jk=i,ki=jji=k,kj=i,ik=j
(很显然不满足交换律)

D = { ± 1 , ± i , ± j , ± k } D=\{\pm 1,\pm i,\pm j,\pm k\} D={±1,±i,±j,±k}按乘法形成 8 8 8阶非交换群

Reference

近世代数_中国大学MOOC(慕课) (icourse163.org)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

M3ng@L

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值