近世代数-群论基础一
半群与群
半群:在集合,任意 x , y x,y x,y经过一元运算 x ∘ y x\circ y x∘y 得到的结果依然是在该集合内的,且满足结合律
幺半群:在半群的基础上引入幺元(单位元)
定理2.1:括号的添加方式(位置)与结果无关
群:每个元素都可逆的幺半群
定义:非空集 G G G按它的二元运算 ∘ \circ ∘,形成群当且仅当
- G G G对运算 ∘ \circ ∘封闭,即 a , b ∈ G ⇒ a ∘ b ∈ G a,b\in G\Rightarrow a\circ b\in G a,b∈G⇒a∘b∈G
- 运算 ∘ \circ ∘ 满足结合律
- 有单位元
- 每个元都可逆,即 a ∈ G a\in G a∈G时有 b ∈ G b\in G b∈G使得 a ∘ b = e = b ∘ a a\circ b=e=b\circ a a∘b=e=b∘a
另外,一般把集合 X X X的基数记为 ∣ X ∣ |X| ∣X∣,对于有限集合中基数 ∣ X ∣ |X| ∣X∣就是 X X X中的元素总个数
若群 G G G中元素有限,则称为有限群,其元素总个数 ∣ G ∣ |G| ∣G∣称为 G G G的阶,当 ∣ G ∣ = n |G|=n ∣G∣=n时称 G G G为n阶群
在群的基础上若满足交换律,则称 G G G为Abel群或交换群
定理2.3:当半群满足可除性条件,对任何 a , b ∈ G a,b\in G a,b∈G,方程 a x = b ax=b ax=b与 y a = b ya=b ya=b在 G G G中都有解,半群形成群
定理2.4:设 G G G为群,则 G G G中有消去律
当有限半群 G G G中具有消去律,则 G G G必为消去律(特殊地,自然数数集 N N N按加法形成具有消去律的半群不是群)
群的例子
数论的例子
- Pell方程
G d = { x + y d : x , y ∈ Z 且 x 2 − d y 2 = 1 } G_d=\{x+y\sqrt d:x,y\in \mathbb Z且x^2-dy^2=1\} Gd={x+yd:x,y∈Z且x2−dy2=1},按数的乘法形成Abel群
线性代数的例子
- 矩阵
G L n ( R ) = { n 阶 实 方 阵 A : d e t A ≠ 0 } GL_n(\mathbb R)=\{n阶实方阵A:det~A\neq 0\} GLn(R)={n阶实方阵A:det A=0}以及 S L n ( R ) = { n 阶 实 方 阵 A : d e t A = 1 } SL_n(\mathbb R)=\{n阶实方阵A:det~A=1\} SLn(R)={n阶实方阵A:det A=1}
按矩阵的乘法形成群;前者称为一般线性群,后者称为特殊线性群
其他
- 函数
实数区间 I I I上全体连续的实函数按函数加法( f + g f+g f+g在 x ∈ I x\in I x∈I处值定义为 f ( x ) + g ( x ) f(x)+g(x) f(x)+g(x))形成Abel群;此时区间 I I I上零函数 O ( x ) = 0 O(x)=0 O(x)=0为连续函数,它是Abel群的加法单位元(零元)
- 整数加群
任给正整数 m m m,
m Z = { m x : x ∈ Z } = { ⋯ , − 2 m , − m , 0 , m , 2 m , ⋯ } m\mathbb Z=\{mx:x\in \mathbb Z\}=\{\cdots,-2m,-m,0,m,2m,\cdots\} mZ={mx:x∈Z}={⋯,−2m,−m,0,m,2m,⋯},按整数的加法形成Abel群,整数 0 0 0为其加法单位元;且该群通常叫做整数加群
PS: m m m的倍数可以表示作 m Z m\mathbb{Z} mZ
- 模 m m m同余关系
a ≡ b ( m o d m ) a\equiv b\pmod m a≡b(modm)
- 集合上的等价关系
设非空集合 X X X上的等价关系写作 ∼ \sim ∼,则该关系满足
自反性: x ∼ x x\sim x x∼x;对称性: x ∼ y ⇒ y ∼ x x\sim y \Rightarrow y\sim x x∼y⇒y∼x;传递性: x ∼ y ∼ z ⇒ x ∼ z x\sim y\sim z\Rightarrow x\sim z x∼y∼z⇒x∼z
等价类: x ∈ X x\in X x∈X所在的等价类指 { y ∈ X : x ∼ y } \{y\in X:x\sim y\} {y∈X:x∼y};不同等价类并集为空
- Z / m Z \mathbb{Z}/m\mathbb{Z} Z/mZ上的加乘法
模
m
m
m同余关系是整数集
Z
\mathbb{Z}
Z上的等价关系,
a
∈
Z
a\in \mathbb{Z}
a∈Z所在的等价类为
a
ˉ
=
a
+
m
Z
=
{
x
∈
Z
:
x
≡
a
(
m
o
d
m
)
}
\bar a = a + m\mathbb{Z} = \{x\in \mathbb{Z}:x\equiv a\pmod m\}
aˉ=a+mZ={x∈Z:x≡a(modm)}
称
a
a
a所在的模
m
m
m剩余类在集合
Z
/
m
Z
=
{
a
ˉ
=
a
+
m
Z
:
a
∈
Z
}
=
{
0
ˉ
,
1
ˉ
,
⋯
,
m
−
1
‾
}
\mathbb{Z}/m\mathbb{Z}=\{\bar{a} = a + m\mathbb{Z}:a\in \mathbb{Z}\} = \{\bar 0 ,\bar 1,\cdots,\overline{m-1}\}
Z/mZ={aˉ=a+mZ:a∈Z}={0ˉ,1ˉ,⋯,m−1}
上,定义其加法与乘法为:
a
ˉ
+
b
ˉ
=
a
+
b
‾
,
a
ˉ
b
ˉ
=
a
b
‾
\bar a + \bar b = \overline{a+b},~\bar{a}\bar b=\overline{ab}
aˉ+bˉ=a+b, aˉbˉ=ab
证明定义的合理性
若
a
,
c
a,c
a,c为
a
ˉ
\bar a
aˉ剩余类中的元素,而
b
,
d
b,d
b,d为
b
ˉ
\bar b
bˉ剩余类中的元素;则
a
≡
c
(
m
o
d
m
)
且
b
≡
d
(
m
o
d
m
)
⇒
a
+
b
≡
c
+
d
(
m
o
d
m
)
且
a
b
≡
c
d
(
m
o
d
m
)
a\equiv c\pmod m且b\equiv d\pmod m\\ \Rightarrow a+b\equiv c+d\pmod m且ab\equiv cd \pmod m\\
a≡c(modm)且b≡d(modm)⇒a+b≡c+d(modm)且ab≡cd(modm)
以此类推,分别遍历
a
ˉ
\bar a
aˉ与
b
ˉ
\bar b
bˉ中剩余类的所有元素得到以上类似同余式,所以
a
+
b
‾
=
c
+
d
‾
且
a
b
‾
=
c
d
‾
\overline{a+b}=\overline{c+d}且\overline{ab}=\overline{cd}
a+b=c+d且ab=cd
以上加乘法满足结合律与交换律
故 Z / m Z \mathbb{Z}/m\mathbb{Z} Z/mZ按剩余类的加法形成 m m m阶Abel群,加法单元为 0 ˉ = m Z \bar 0=m\mathbb{Z} 0ˉ=mZ
- 单射与满射(数学表达)
设
f
f
f是集合
X
X
X到集合
Y
Y
Y的映射,若
f
(
x
1
)
=
f
(
x
2
)
⇒
x
1
=
x
2
f(x_1)=f(x_2)\Rightarrow x_1=x_2
f(x1)=f(x2)⇒x1=x2
则称映射
f
:
X
→
Y
f:X\rightarrow Y
f:X→Y是单射
若 { f ( x ) : x ∈ X } = Y \{f(x):x\in X\}=Y {f(x):x∈X}=Y,则称 f : X → Y f:X\rightarrow Y f:X→Y是满射
当 f : X → Y f:X\rightarrow Y f:X→Y既是单射又是双射时,称 f f f为 X X X到 Y Y Y的双射
对称群
设非空集 X X X到ta自身的双射叫 X X X上的置换,所有 X X X上的置换按照映射的复合构成群,其单位元是 X X X上的单位元为恒等映射 I x : x ↦ x I_x:x\mapsto x Ix:x↦x;该群称为 X X X上的对称群,记为 S ( X ) S(X) S(X)
对称群中的置换
n n n元集 X = { x 1 , ⋯ , x n } X=\{x_1,\cdots,x_n\} X={x1,⋯,xn}上的一个置换相应于 x 1 , ⋯ , x n x_1,\cdots,x_n x1,⋯,xn的一个全排列;
∣ X ∣ = n |X|=n ∣X∣=n时 ∣ S ( X ) ∣ = n ! |S(X)|=n! ∣S(X)∣=n!;对于正整数 n n n,对称群 S ( { 1 , ⋯ , n } ) S(\{1,\cdots,n\}) S({1,⋯,n})简记成 S n S_n Sn
一般表示作
σ
=
(
1
2
3
2
3
1
)
\sigma = \begin{pmatrix} 1&2&3\\ 2&3&1 \end{pmatrix}
σ=(122331)
代表着
σ
(
1
)
=
4
,
σ
(
3
)
=
6
,
⋯
\sigma(1)=4,\sigma(3)=6,\cdots
σ(1)=4,σ(3)=6,⋯
PS: ∣ X ∣ |X| ∣X∣表示 X X X的阶;恒等映射 ⟺ \iff ⟺ 单位元
对称群 Groupe symétrique - 知乎 (zhihu.com)
复数的几何形式
Hamilton四元数(四维超复数)
z
=
a
+
b
i
+
c
j
+
d
k
,
其
中
a
,
b
,
c
,
d
为
实
数
z=a+bi+cj+dk,其中a,b,c,d为实数
z=a+bi+cj+dk,其中a,b,c,d为实数
其乘法的特殊之处
要求
i
2
=
j
2
=
k
2
=
i
j
k
=
−
1
i^2=j^2=k^2=ijk=-1
i2=j2=k2=ijk=−1,则
i
j
=
k
,
j
k
=
i
,
k
i
=
j
j
i
=
−
k
,
k
j
=
−
i
,
i
k
=
−
j
ij=k,jk=i,ki=j\\ ji=-k,kj=-i,ik=-j
ij=k,jk=i,ki=jji=−k,kj=−i,ik=−j
(很显然不满足交换律)
故 D = { ± 1 , ± i , ± j , ± k } D=\{\pm 1,\pm i,\pm j,\pm k\} D={±1,±i,±j,±k}按乘法形成 8 8 8阶非交换群