

朴素做法: 就是两层循环 外层循环每一个数 内循环窗口内每一个值,这样的时间复杂度是O(nm);
这样我们就可以用 单调队列来优化 可将时间复杂度降为 O(n)。


举例 这是我们准备求的一个数组 红色是元素值 灰色是数组下标




#include <iostream> #include <cstring> #include <algorithm> using namespace std; const int N = 1e6+10; int q[N],a[N]; int n,k; int main() { cin>>n>>k; for (int i = 0; i < n; i ++ ) cin>>a[i]; //窗口维护单调递增队列 队头为最小值 int hh=0,tt=-1; for(int i = 0; i < n; i ++) { if(hh<=tt && q[hh]<i-k+1) hh++;//队头超出窗口出队 因为每次只入一个元素 所以用if即可 while(hh<=tt && a[q[tt]]>=a[i]) tt--;//队列单调递增 q[++tt]=i; //记住q里面存的是下标!! 要输出元素应该是 a[q[hh]] if(i>=k-1) cout<<a[q[hh]]<<" ";//窗口内达到k个 } cout<<endl; //窗口维护单调递减队列 队头为最大值 hh=0,tt=-1; for(int i = 0; i < n; i ++) { if(hh<=tt && q[hh]<i-k+1) hh++;//队头超出窗口出队 因为每次只入一个元素 所以用if即可 while(hh<=tt && a[q[tt]]<=a[i]) tt--;//队列单调递增 q[++tt]=i; //记住q里面存的是下标!! 要输出元素应该是 a[q[hh]] if(i>=k-1) cout<<a[q[hh]]<<" ";//窗口内达到k个 } cout<<endl; return 0; }
这篇博客介绍了如何利用单调队列优化滑动窗口最大(小)值问题,将时间复杂度从O(nm)降低到O(n)。通过示例代码详细解释了单调递增和单调递减队列的实现过程,并展示了如何应用它们来解决ACWing题库中的相关问题。
1万+

被折叠的 条评论
为什么被折叠?



