决策树学习笔记
文章平均质量分 78
在菜菜老师课件的基础上写了一些自己的理解,运行结果,代码的注释等,是决策树的学习笔记
功夫大笨鲨
这个作者很懒,什么都没留下…
展开
-
分类树参数,属性,接口列表
文章目录前言一、分类树参数列表二、分类树属性列表三、分类树接口列表前言采用菜菜老师的列表一、分类树参数列表二、分类树属性列表三、分类树接口列表原创 2021-11-13 22:02:00 · 760 阅读 · 0 评论 -
泰坦尼克号幸存者预测(分类)
文章目录前言步骤1. 导入库2. 使用pandas来读取csv文件3. 对csv文件的信息进行探索4. 数据的预处理4.1 将对训练模型无关的特征进行删除4.2 将所有非数字类型的特征转为数字类型的特征4.3 统一数据的数量5. 对数据集进行拆分,将数据特征和标签进行分离(survived结果和其余的数据进行分离)6. 对数据集进行训练集和测试集的划分7. 对划分的测试集和训练集进行排序(养成习惯)8. 对模型进行训练9. 通过网格搜索来调整最优参数注意前言提示:这里可以添加本文要记录的大概内容:.原创 2021-10-15 21:22:18 · 1290 阅读 · 0 评论 -
回归树案例(一维回归的图像案例)
文章目录前言步骤1. 导入需要的库2. 创建含有噪声的正弦曲线3. 对模型的实例化以及训练模型4. 将测试集导入,进行预测5. 对结果进行绘制图像总结前言观察决策树是怎样拟合一条曲线的。我们用回归树来拟合正弦曲线,并添加一些噪声来观察回归树的表现步骤1. 导入需要的库import numpy as npimport matplotlib.pyplot as pltfrom sklearn.tree import DecisionTreeRegressor2. 创建含有噪声的正弦曲线.原创 2021-10-15 15:57:07 · 517 阅读 · 0 评论 -
决策树(2.回归树)
文章目录前言一、重要参数criterion交叉验证交叉验证cross_val_score的用法二、 重要的属性和接口(详细在分类树笔记)总结前言几乎所有参数,属性及接口都和分类树一模一样。需要注意的是,在回归树种,没有标签分布是否均衡的问题,回归树处理的是连续型变量,因此没有class_weight这样的参数。使用波士顿房价数据集来进行回归树的学习提示:以下是本篇文章正文内容,下面案例可供参考一、重要参数criterion回归树衡量分支质量的指标,支持标准有三种:输入"mse"使用均.原创 2021-10-14 19:25:08 · 1108 阅读 · 0 评论 -
决策树原理
文章目录前言一、决策树是什么?二、算法原理ID3算法1.ID3算法概述2.计算不纯度的方法误差率信息熵Gini(基尼系数)3.公式应用及总结特征4. 举例说明5.总结6. ID3的局限性C4.5算法1. C4.5与ID3和CART的区别2. 修改局部最优化的条件3. 利用GR重新计算上面的例子4. 连续变量处理手段CART算法总结前言决策树原理:ID3算法,c4.5算法,CART算法一、决策树是什么?决策树(Decision Tree)是一种非参数的有监督学习方法,它能够从一系列有特征和标签的.原创 2021-10-08 20:40:13 · 1706 阅读 · 0 评论 -
决策树(1. 分类树)
文章目录前言一、重要参数1.1 criterion建立一棵树的步骤1.2 random_state & splitter1.2.1 建立树的第五步(建立模型)添加参数1.3 剪枝参数1.3.1 查看对训练集的拟合效果如何1.3.2 max_depth1.3.3 min_samples_leaf & min_samples_split1.3.4 建立树的第五步(建立模型)添加上述参数1.3.5 max_features & min_impurity_decrease1.3.6 确认最.原创 2021-10-10 18:21:11 · 1568 阅读 · 0 评论 -
决策树概述
文章目录前言sklearn中的决策树1.sklearn.tree模块2.sklearn基本建模流程前言决策树(Decision Tree)是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回归问题。sklearn中的决策树1.sklearn.tree模块sklearn中决策树的类都在tree模块下,模块共包含五个类:类名称tree.DecisionTreeClassififier分类树tr.原创 2021-10-10 17:20:30 · 233 阅读 · 0 评论