聚类算法Kmeans
文章平均质量分 74
功夫大笨鲨
这个作者很懒,什么都没留下…
展开
-
聚类算法用于降维,KMeans的矢量量化应用
文章目录前言案例:聚类算法用于降维,KMeans的矢量量化应用1. 导入需要的库2.导入数据,探索数据(里面的内容是探索图像数据的一个固定的流程)3. 决定超参数,数据预处理4. 对数据进行K-Means的矢量量化5. 对数据进行随机的矢量量化6. 将原图,按KMeans矢量量化和随机矢量量化的图像绘制出来总结前言在本案例中添加了不适用KMeans来进行矢量量化,随机抽取64个当作质心,与使用KMeans矢量量化做出了对比案例:聚类算法用于降维,KMeans的矢量量化应用K-Means聚类最重.原创 2021-11-21 16:23:15 · 2642 阅读 · 0 评论 -
KMeans参数,属性,接口列表
文章目录一、KMeans参数列表二、KMeans属性列表三、KMeans接口列表一、KMeans参数列表二、KMeans属性列表三、KMeans接口列表原创 2021-11-20 21:45:34 · 1044 阅读 · 0 评论 -
聚类算法KMeans
文章目录前言一、KMeans1.1 KMeans是如何工作的1.2 簇内误差平方和1.3 KMeans算法的时间复杂度二、sklearn.cluster.KMeans总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。一、KMeansKMeans可以说是最简单的聚类算法没有之一1.1 KMeans是如何工作的关键概念:簇与质心KMeans算法将一组N个样本的特征矩阵.原创 2021-11-20 21:41:27 · 2542 阅读 · 0 评论 -
聚类算法概述
文章目录前言一、无监督学习与聚类算法二、sklearn中的聚类算法总结前言开始学习聚类算法,在菜菜老师的课件基础上进行一些标注等一、无监督学习与聚类算法决策树,随机森林,逻辑回归,他们虽然有着不同的功能,但却都属于“有监督学习”的一部分,即是说,模型在训练的时候,即需要特征矩阵X,也需要真实标签y。机器学习当中,还有相当一部分算法属于“无监督学习”,无监督的算法在训练的时候只需要特征矩阵X,不需要标签。PCA降维算法就是无监督学习中的一种,聚类算法,也是无监督学习的代表算法之一。聚类算法又.原创 2021-11-16 18:18:29 · 1386 阅读 · 0 评论