小白学习HigherHRNet代码

本文介绍了HRNet项目中的`dist_train.py`,关注参数解析、分布式训练设置、GPU选择与配置,以及一个示例配置文件,展示了人体姿态估计的训练流程。
摘要由CSDN通过智能技术生成

代码源自:

HRNet/HigherHRNet-Human-Pose-Estimation: This is an official implementation of our CVPR 2020 paper "HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation" (https://arxiv.org/abs/1908.10357) (github.com)

dist_train.py

共三个函数

1. 第一个parse_args:

def parse_args():

用于解析命令行参数。它使用argparse库来处理命令行参数,使您能够通过命令行在运行脚本时传递配置和选项。

以下是每个参数的解释:

  1. --cfg: 实验配置文件名。这是一个必需的参数,您需要提供一个配置文件来指定训练实验的各种设置。

  2. opts: 通过命令行修改配置选项。这允许您通过命令行添加额外的选项来修改配置文件中的设置。

  3. --gpu: 用于多进程训练的GPU ID。

  4. --world-size: 分布式训练中的节点数量。节点数量是指在分布式训练中参与训练的计算机节点的数量。每个节点都可以执行一部分训练工作,例如处理一部分的训练数据和更新模型的权重。节点数量越多,可以并行处理的工作量越大,从而加快整体的训练速度。

  5. --dist-url: 用于设置分布式训练的URL。

  6. --rank: 分布式训练中的节点排名。

  7. args: 包含所有解析后的命令行参数的对象。

2. 第二个:main由三部分组成

def main():

1.解析命令行参数。它会从命令行中获取用户传递的参数和选项,并将其解析为一个名为 args 的对象。

  args = parse_args()
  update_config(cfg, args)
  cfg.defrost()
  cfg.RANK = args.rank
  cfg.freeze()

2.输出日志信息

    logger, final_output_dir, tb_log_dir = create_logger(
        cfg, args.cfg, 'train'
    )
​
    logger.info(pprint.pformat(args))
    logger.info(cfg)

3.解析GPU参数和分布式训练参数

    if args.gpu is not None:
        warnings.warn('You have chosen a specific GPU. This will completely '
                      'disable data parallelism.')
    if args.dist_url == "env://" and args.world_size == -1:
        args.world_size = int(os.environ["WORLD_SIZE"])
    args.distributed = args.world_size > 1 or cfg.MULTIPROCESSING_DISTRIBUTED
    ngpus_per_node = torch.cuda.device_count()
    if cfg.MULTIPROCESSING_DISTRIBUTED:
        # Since we have ngpus_per_node processes per node, the total world_size
        # needs to be adjusted accordingly
        args.world_size = ngpus_per_node * args.world_size
        # Use torch.multiprocessing.spawn to launch distributed processes: the
        # main_worker process function
        mp.spawn(
            main_worker,
            nprocs=ngpus_per_node,
            args=(ngpus_per_node, args, final_output_dir, tb_log_dir)
        )

3. 第三个:main_worker

def main_worker(
​
•    gpu, ngpus_per_node, args, final_output_dir, tb_log_dir
​
):

当解释这段代码时,我们可以将它分成以下几个主要部分来讲解:

1. 环境设置和模型构建:

  • 设置 cuDNN 相关配置,包括性能优化和确定性计算等。

  • 根据配置中的模型名称,调用相应的函数构建模型。

  • 初始化分布式训练环境,包括分布式训练节点数量、分布式训练的进程与 GPU 分配等。

        cudnn.benchmark = cfg.CUDNN.BENCHMARK
        torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC
        torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED

2. 模型并行和数据加载:

  • 初始化模型,可能会使用 DistributedDataParallel 进行模型并行,或者是普通的 DataParallel

  • 创建数据加载器,准备数据用于训练。

    train_loader = make_dataloader(
            cfg, is_train=True, distributed=args.distributed
        )

3. 训练循环:

  • begin_epochcfg.TRAIN.END_EPOCH 进行循环,对每个 epoch 进行训练。

  • 在每个 epoch 内,调用 do_train() 函数进行实际的训练,包括前向传播、反向传播、参数更新等。

  • do_train()后续细讲

for epoch in range(begin_epoch, cfg.TRAIN.END_EPOCH):

4. 学习率调整和模型保存:

  • 根据学习率调整策略,更新优化器的学习率。

  • 根据训练效果,保存模型的检查点,包括当前状态和最好的状态。

在训练过程中,在特定的训练轮次(epoch)结束后,调用学习率调度器(lr_scheduler)的 step 方法来更新优化器的学习率。

      lr_scheduler.step()

5. 最终模型保存:

  • 将最终模型的状态保存到文件中。

torch.save(model.module.state_dict(), final_model_state_file)

在每个部分内,代码执行的操作和目的都会有所不同。这个函数的目标是将分布式训练的各个环节组织起来,从模型构建、数据加载、训练循环、学习率调整到模型保存,确保训练过程顺利进行。

w32_512_adam_lr1e-3.yaml

配置文件:

dataset

INPUT_SIZE: 512 表示输入图像的大小。它指定了在训练或验证过程中,图像会被调整为 512x512 的尺寸。这个尺寸是模型接受的输入尺寸,用于训练和推断(预测)过程。在人体姿态估计任务中,输入图像的大小是一个重要的超参数。较大的输入图像尺寸可能会带来更多的细节信息,但同时也会增加计算开销。较小的输入图像尺寸可能会减少计算开销,但可能会丢失一些细节信息。

DATASET:
  INPUT_SIZE: 512
​

model

通道数是用来表示模型中不同层次的特征图(feature maps)的维度,它影响着模型的参数量、计算复杂度以及模型的性能。

MODEL:
 NUM_CHANNELS:
       - 32
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值