学习笔记:欧拉函数

欧拉函数定义:
在这里插入图片描述

简单推理:

p p p是质数时,显然有 φ ( p ) = p − 1 φ(p) = p - 1 φ(p)=p1

p p p q q q为质数时,有 φ ( p q ) = ( p − 1 ) ( q − 1 ) = p q ( 1 − 1 p ) ( 1 − 1 q ) φ(pq) = (p - 1)(q - 1) = pq(1 - \frac{1}{p})(1-\frac{1}{q}) φ(pq)=(p1)(q1)=pq(1p1)(1q1)
首先,对于 1 1 1 ~ p q pq pq p q pq pq个数,我们考虑有多少个数与 p q pq pq是不互质的。
有, p , 2 p , 3 p , . . . , ( q − 1 ) p p, 2p, 3p, ..., (q-1)p p,2p,3p,...,(q1)p q − 1 q-1 q1个 和 q , 2 q , 3 q , . . . , ( p − 1 ) q q,2q,3q,...,(p-1)q q,2q,3q,...,(p1)q共p-1个,最后在加上 p q pq pq这一个。
所以,与 p q pq pq互质的数有 p q − ( p − 1 ) − ( q − 1 ) − 1 pq - (p-1)-(q-1)-1 pq(p1)(q1)1个。
p q − ( p − 1 ) − ( q − 1 ) − 1 = p q − p − q + 1 = ( p − 1 ) ( q − 1 ) pq - (p-1)-(q-1)-1=pq-p-q+1=(p-1)(q-1) pq(p1)(q1)1=pqpq+1=(p1)(q1)

对于 p k p^k pk,其中 p p p是质数,有
φ ( p k ) = p k − p k − 1 = p k ∗ ( 1 − 1 p ) \varphi(p^k)=p^k-p^{k-1}=p^k*(1-\frac{1}{p}) φ(pk)=pkpk1=pk(1p1)
同样的,我们只考虑在这 p k p^k pk个数中有多少个是与 p k p^k pk不互质的。
p , 2 p , 3 p , . . . , p k − 1 p p,2p,3p,...,p^{k-1}p p,2p,3p,...,pk1p p k − 1 p^{k-1} pk1个。
所以,与 p k p^k pk互质的数有 p k − p k − 1 p^k-p^{k-1} pkpk1个。

同时,欧拉函数还有一个性质

欧拉函数是积性函数,但不是完全积性函数。
当且只当 n n n可以分解成两个互质的整数之积, n = p 1 × p 2 n = p_1 × p_2 n=p1×p2,则 φ ( n ) = φ ( p 1 p 2 ) = φ ( p 1 ) φ ( p 2 ) φ(n) = φ(p_1p_2) = φ(p_1)φ(p_2) φ(n)=φ(p1p2)=φ(p1)φ(p2)


有了以上的知识,我们就可以快速的利用公式计算任意一个正整数 n n n的欧拉函数。

由算术基本定理可以知道,任意一个正整数 x x x都可以唯一的分解成若干个质数的乘积。
x = p 1 k 1 ∗ p 2 k 2 ∗ p 3 k 3 ∗ . . . ∗ p n k n x = p_1^{k_1}*p_2^{k_2}*p_3^{k_3}*...*p_n^{k_n} x=p1k1p2k2p3k3...pnkn

所以,
φ ( x ) = φ ( p 1 k 1 ) ∗ φ ( p 2 k 2 ) ∗ φ ( p 3 k 3 ) ∗ . . . ∗ φ ( p n k n ) = p 1 k 1 ∗ ( 1 − 1 p 1 ) ∗ . . . ∗ p n k n ∗ ( 1 − 1 p n ) = x ∗ ( 1 − 1 p 1 ) ∗ ( 1 − 1 p 2 ) . . . ∗ ( 1 − 1 p n ) \varphi(x)=\varphi(p_1^{k_1})*\varphi(p_2^{k_2})*\varphi(p_3^{k_3})*...*\varphi(p_n^{k_n}) \\=p_1^{k_1}*(1-\frac{1}{p_1})*...*p_n^{k_n}*(1-\frac{1}{p_n}) \\=x*(1-\frac{1}{p_1})*(1-\frac{1}{p_2})...*(1-\frac{1}{p_n}) φ(x)=φ(p1k1)φ(p2k2)φ(p3k3)...φ(pnkn)=p1k1(1p11)...pnkn(1pn1)=x(1p11)(1p21)...(1pn1)


单个欧拉函数求法:

int euler(int x)
{
    int res = x;
    for(int i = 2; i <= x / i; i ++)
        if(x % i == 0)
        {
            res = res / i * (i - 1);
            while(x % i == 0)   x /= i;
        }
    if(x > 1)   res = res / x * (x - 1);
    return res;
}

区间欧拉函数筛法:
(求1~n的欧拉函数值)
1、埃氏筛思想:

const int maxn=1e6+5;
int phi[maxn]; //phi[i]是i的欧拉函数值
void Euler(int n)
{
    //首先将每个数的欧拉函数值都初始化为它自己 
	for(int i=1;i<=n;i++)	phi[i]=i;
	
	for(int i=2;i<=n;i++)
	{
		//对于每一个质数p,对2p,3p,...的欧拉函数值/p*(p-1) 
		if(phi[i]==i)
		{
			for(int j=i;j<=n;j+=i)
				phi[j]=phi[j]/i*(i-1);
		}
	}
}
int main()
{
	int n; cin>>n;
	Euler(n);
	return 0;
}

2、线性筛过程中求欧拉函数:

const int N = 1e6+5;

int prime[N],cnt,phi[N];
bool vis[N];

void get_euler(int n)
{
    phi[1]=1;
    for(int i=2;i<=n;i++)
    {
        if(!vis[i])
        {
            prime[cnt++]=i;
            phi[i]=i-1;
        }
        for(int j=0;prime[j]<=n/i;j++)
        {
            vis[prime[j]*i]=1;
            if(i%prime[j]==0)
            {
                phi[prime[j]*i]=phi[i]*prime[j];
                break;
            }
            phi[prime[j]*i]=phi[i]*(prime[j]-1);
        }
    }
}

int main()
{
    int n; cin>>n;
    get_euler(n);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值