阿里音频生成大模型一次发俩还开源! sense voice+cosy voice

最新发布开源语音大模型项目FunAudioLLM,而且一次包含两个模型:SenseVoice和CosyVoice

SenseVoice专注高精度多语言语音识别、情感辨识和音频事件检测,支持超过50种语言识别,效果优于Whisper模型,中文与粤语提升50%以上。

且情感识别能力强,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件检测,多方面测试拿下SOTA。

CosyVoice则专注自然语音生成,支持多语言、音色和情感控制,支持中英日粤韩5种语言的生成,效果显著优于传统语音生成模型。

仅需要3~10s的原始音频,CosyVoice即可生成模拟音色,甚至包括韵律、情感等细节,包括跨语种语音生成。

而且CosyVoice支持以富文本或自然语言的形式,对生成语音的情感、韵律进行细粒度的控制,生音频在情感表现力上得到明显提升。

一、项目体验

可以直接在网页上进行体验,无需对环境进行任何安装等等,很方便。
CosyVoice在线体验:https://www.modelscope.cn/studios/iic/CosyVoice-300M


SenseVoice在线体验:https://www.modelscope.cn/studios/iic/SenseVoice

### 使用大模型工具生成音频的方法 对于希望利用大型模型工具来生成音频的任务,可以借鉴当前前沿研究和技术进展中的方法。音乐本质上是由一系列声波构成的声音序列,但为了便于计算,通常将其转换为数字格式,如MIDI文件或音频波形[^1]。这种数字化表示让每首歌曲成为一串有序的数据点,非常适合用于训练深度学习模型。 具体到实际操作层面,以阿里通义实验室开源的FunAudioLLM为例,该模型包含了两个核心部分:SenseVoiceCosyVoice,其中后者专注于语音生成任务[^2]。要使用这类先进的音频生成功能,一般遵循以下几个方面: #### 准备工作环境 确保拥有合适的开环境是第一步。这可能涉及到安装特定版本的Python以及必要的库和支持软件包。对于基于PyTorch框架构建的大规模预训练模型来说,还需要配置GPU支持以便加速运算过程。 #### 获取并加载预训练模型 许多现代音频合成系统都依赖于预先训练好的权重参数来进行高效的初始化。通过官方渠道下载最新的预训练模型,并按照文档说明正确导入至本地环境中是非常重要的一步。 #### 数据准备与处理 高质量的数据集对于任何机器学习应用都是至关重要的资源之一。当目标是在已有基础上进一步优化或者微调现有模型时,则需收集足够的标注数据作为输入素材。这些原始资料应当经过适当的前处理步骤——比如清理噪声、标准化采样率等——之后再送入网络内部参与迭代更新流程。 #### 调整超参数设置 不同的应用场景往往对应着各异的最佳实践方案;因此,在正式部署之前调整一些关键性的超参(例如学习速率、批次大小)有助于提升最终产出的质量水平。此外,还可以尝试探索更多新颖的设计思路,像引入注意力机制或是采用更复杂的架构设计等等。 #### 测试评估与反馈循环 完成初步设定后即进入验证环节,此时应选取一部分预留样本执行预测测试,以此检验整个系统的稳定性和准确性表现如何。根据所得结果不断修正错误直至满意为止,形成良好的闭环控制体系。 ```python from funaudiollm import FunAudioLLM, CosyVoice model = FunAudioLLM.load_model('path_to_pretrained_weights') cosy_voice = model.get_generator() audio_output = cosy_voice.generate(text_input="Hello world!") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

monster justin

感谢您的打赏,更新的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值