刷题第二天

一、简单做法

求1+2+...+n

注意i初始为1,i 临界点等于n

 int sumNums(int n) {
        int sum=0;
        for(int i=1;i<=n;i++){
            sum+=i;
        }
        return sum;
    }

2的幂

int的范围是2^31 ~ 2^31-1;若i=31,p最大算到2^31,超出范围,所以如果要让i=31,需要定义p为unsign int类型

其实运行i<31,也可以,因为n如果超过2^30,后面都不是2的幂,即都为false,运行速度也会快很多。

 bool isPowerOfTwo(int n) {
        if(n<0){
            return false;
        }
        if(n==1){
            return true;
        }
        if(n>0){
            int p=1;
            for(int i=1;i<=31;i++){
                p*=2;
                if(n==p){
                    return true;
                }
            }
        }
        return false;
    }

3的幂 for(int i=1;i<20;i++)

4的幂 for(int i=1;i<15;i++)

n的第k个因子

int kthFactor(int n, int k) {
        int cnt=0;
        for(int i=1;i<=n;i++){
            if(n%i==0){
                ++cnt;
                if(cnt==k){
                    return i;
                }
            }
            
        }
        return -1;
    }

有效完全平方数

if(p>num){
                return false;
            }

必须加上此判断条件,否则会一直循环

 bool isPerfectSquare(int num) {
        long long p;
        for(int i=1;;i++){
            p=(long)i*i;
            if(num==p){
                return true;
            }
            if(p>num){
                return false;
            }
        }
        return false;
    }

 

 

二、进阶做法

求1+2+...+n

利用递归求解

 int sumNums(int n) {
      return n==0?0:n+sumNums(n-1);
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值