目标检测笔记(五):查看通过COCOEvaluator生成的coco_instances_results.json文件的详细检测信息,包含AP、AR、MR和DR等

文章介绍了如何利用COCO评估器对目标检测和语义分割算法进行性能验证。首先,注册并加载自定义数据集,然后通过Detectron2库进行模型预测和评估,生成coco_instances_results.json文件。接着,使用pycocotools解析该文件,结合COCO数据集的标注,计算平均精度(AP)、漏检率(MR)、检测率(DR)等指标,最终将结果保存到txt文件中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

COCO评估器

COCO(Common Objects in Context)是一个被广泛使用的计算机视觉领域的数据集,其中包含了多个场景、多种对象以及不同光照和背景下的图像。COCO数据集中的每一张图片都标注了物体的类别、位置和大小等信息,这些信息可以用于训练和评估目标检测、语义分割等计算机视觉任务的模型。

COCO数据集中的图片和标注信息可以被用于训练和评估机器学习算法,但是为了保证算法的准确性,我们需要一个评估指标来量化算法的性能。COCO评估器(COCOEvaluator)就是一个用于计算目标检测和语义分割等算法性能的工具。它工作原理是将机器生成的结果与真实的标注信息进行比较,从而计算出各种指标,如精确度(precision)、召回率(recall)等,以评估算法的性能表现。

COCOEvaluator不仅可以计算单个类别的指标,还可以计算多个类别的指标,为算法的优化提供方向。此外,COCOEvaluator还可以根据不同的评估要求,如IoU(Intersection over Union)匹配、边框等,灵活地评估算法的性能。

验证集测试

这段代码围绕使用 Detectron2 框架进行目标检测的数据集注册、模型验证以及评估指标计算展开,具体分析如下:

1. 数据集注册

  • 代码功能mydata.py 文件的作用是将自定义的 COCO 格式数据集注册到 Detectron2 框架中。
  • 代码解析
    • from detectron2.data.datasets import register_coco_instances:从 detectron2data.datasets 模块导入 register_coco_instances 函数,用于注册 COCO 数据集。
    • register_coco_instances("MY_train", {}, "./dataSet/train.json", "./dataSet/images/train")register_coco_instances("MY_test", {}, "./dataSet/test.json", "./dataSet/images/test"):分别注册训练集和测试集,MY_trainMY_test 是数据集的名称,{} 为空的元数据字典,后两个参数分别是数据集的标注文件路径和图像文件夹路径。

2. 模型验证与结果生成

  • 代码功能:此部分代码通过加载预训练模型权重,对注册的测试数据集进行预测,并生成 coco_instances_results.json 文件。
  • 代码解析
    • import mydata:导入之前定义的 mydata 模块,以使用注册的数据集。
    • from detectron2.config import get_cfg:从 detectron2 导入 get_cfg 函数,用于获取配置对象。
    • os:导入 os 模块,用于操作系统相关的文件和目录操作。
    • from detectron2.engine.defaults import DefaultPredictor:导入 DefaultPredictor,用于创建预测器对象。
    • from detectron2.evaluation import COCOEvaluator, inference_on_dataset:导入 COCOEvaluator 用于评估模型,inference_on_dataset 用于在数据集上进行推理。
    • from detectron2.data import build_detection_test_loader:导入 build_detection_test_loader 函数,用于构建测试数据加载器。
    • DATASET_STR = "MY_test":定义要测试的数据集名称。
    • get_max_path 函数:通过计算指定目录下的文件数量,确定下一个保存验证结果的目录编号。
    • if __name__ == "__main__": 块中:
      • 创建保存验证结果的目录 save_path_root,并确定新的保存目录编号 max_dir_num
      • 初始化配置对象 cfg,并通过 cfg.merge_from_file 方法加载配置文件(这里提供了两种配置文件示例,可按需选择),通过 cfg.MODEL.WEIGHTS 指定预训练模型权重路径。
      • 设置模型的测试阈值 cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST 和类别数 cfg.MODEL.ROI_HEADS.NUM_CLASSES,并指定测试数据集 cfg.DATASETS.TEST
      • 创建预测器 predictor 和评估器 evaluator,构建测试数据加载器 val_loader
      • 调用 inference_on_dataset 函数在测试数据集上进行推理,并输出评估结果。评估结果会保存在指定的输出目录 cfg.OUTPUT_DIR 中,生成 coco_instances_results.json 文件。

3. 评估指标计算与保存

  • 代码功能:此部分代码根据生成的 coco_instances_results.json 文件和 COCO 数据集的标注文件,计算目标检测的各项评估指标(如 AP、AR、MR、DR),并将结果保存到文本文件中。
  • 代码解析
    • from pycocotools.coco import COCOfrom pycocotools.cocoeval import COCOeval:导入 COCOCOCOeval 类,用于处理 COCO 数据集和评估模型。
    • jsonos:导入 json 模块用于处理 JSON 数据,os 模块用于文件操作。
    • 加载预测结果和标注文件:
      • 通过 open 函数读取 coco_instances_results.json 文件内容,并使用 json.load 解析为 JSON 对象 results
      • 使用 COCO 类加载 COCO 数据集的标注文件 annFile,得到 cocoGt 对象。
      • 使用 cocoGt.loadRes(results) 将预测结果加载到 COCO 格式中,得到 cocoDt 对象。
    • 评估计算:
      • 创建 COCOeval 对象 cocoEval,并指定评估类型为边界框评估('bbox')。
      • 调用 cocoEval.evaluate()cocoEval.accumulate()cocoEval.summarize() 方法进行评估计算。
      • 输出平均精度(AP)、漏检率(MR)和检测率(DR)指标,并将详细的评估结果写入文本文件 COCO_AP_MR_DR_AR.txt 中。

总体而言,这段代码展示了一个完整的使用 Detectron2 进行目标检测模型验证和评估的流程,包括数据集注册、模型预测、结果生成以及评估指标计算和保存,为目标检测任务的模型评估提供了具体的实现方法。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZZY_dl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值