题意:
给你 n n n个人,每个人都有个能力值 a i a_i ai。让后在 1 − m 1-m 1−m的路上有 k k k个陷阱,每个陷阱的范围是 [ l i , r i ] [l_i,r_i] [li,ri],伤害是 d i d_i di,能力值低于 d i d_i di的人不能通过陷阱,你可以跑到 r i r_i ri处把这个陷阱摧毁,这样就可以带人过去了。现在起点在 0 0 0,让带尽可能多的人到 m + 1 m+1 m+1点。
思路:
很明显的二分,我们先把
a
a
a数组排序,让后二分带多少人,让后下界就是最小值
m
i
mi
mi,
c
h
e
c
k
check
check的时候需要将
d
i
>
m
i
d_i>mi
di>mi的陷阱都摧毁。
下面我们忽略
d
i
<
m
i
d_i<mi
di<mi的陷阱。
因为陷阱是一个线段,当两个陷阱有重叠的时候,肯定是尽可能往后走,走到这个连续区间段的最后,这样这个连续区间内不存在陷阱就可以走过去了,我们发现来回一趟再把人带过去是三次,我们只需要把这个长度乘
3
3
3即可。
这个显然可以用差分来做,对于差分后的数组,我们只需要看看前缀和是否
>
0
>0
>0,如果
>
0
>0
>0那么
a
n
s
+
=
3
ans+=3
ans+=3(因为我们要过去再回来带人再过去),否则
a
n
s
+
=
1
ans+=1
ans+=1即可。我这里用的是暴力找
r
i
g
h
t
right
right的方法,当时都写一半了也懒得改了,差分这种统计方法比较简单也很巧妙。
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#include<assert.h>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid (tr[u].l+tr[u].r>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;
//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;
const int N=1000010,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;
int n,m,k,t;
int a[N];
vector<PII>v[N],vv[N],tp[N];
bool check(int mid)
{
int mi=a[n-mid+1];
LL cs=0,pos=0;
while(pos!=m+1)
{
int mx=-1; pos++;
for(int i=0;i<v[pos].size();i++) if(mi<v[pos][i].Y) mx=max(mx,v[pos][i].X);
if(mx==-1) cs++;
else
{
int right=mx;
for(int i=pos;i<=right;i++)
{
for(int j=0;j<v[i].size();j++)
if(v[i][j].Y>mi) right=max(right,v[i][j].X);
}
pos--;
cs+=3*(right-pos);
pos=right;
}
if(cs>t) return false;
}
if(cs<=t) return true;
else return false;
}
int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);
cin>>n>>m>>k>>t;
for(int i=1;i<=n;i++) scanf("%d",&a[i]); a[n+1]=INF;
sort(a+1,a+1+n);
for(int i=1;i<=k;i++)
{
int a,b,c; scanf("%d%d%d",&a,&b,&c);
v[a].pb({b,c});
}
int l=0,r=n,ans=0;
while(l<=r)
{
int mid=l+r>>1;
if(check(mid)) ans=mid,l=mid+1;
else r=mid-1;
}
printf("%d\n",ans);
return 0;
}
/*
*/