题意:
让你给一个串染色,不同颜色且相邻的一对字符可以互换位置,用最少的颜色,使交换后这个字符串字典序最小。
思路:
考虑将字符串分成若干个非递减的子序列,由于其非递减的性质,所以在排到字典序的时候他们的相对位置不变,我们可以将其染成一个颜色,不同的非递减子序列染成不同的颜色,这样就可以符合要求了。
下面考虑如何找出有多少个非递减子序列呢?这个就跟导弹拦截这个题差不多了,我们只需要求一个严格递减的最长子序列长度,定义
f
[
i
]
f[i]
f[i]表示到这个点的最长严格递减子序列长度,
m
x
[
i
]
mx[i]
mx[i]表示以
i
i
i结尾的最长子序列长度,转移的话就从
[
s
[
i
]
−
′
a
′
+
1
,
25
]
[s[i]-'a'+1,25]
[s[i]−′a′+1,25]的
m
x
mx
mx转移过来就行,这个就是我们需要的颜色个数,那么染色方案是什么呢?
先抛出结论:直接用
f
[
i
]
f[i]
f[i]即可。
证明:考虑一对逆序对
(
a
i
,
a
j
)
,
i
<
j
,
a
i
>
a
j
(a_i,a_j),i<j,a_i>a_j
(ai,aj),i<j,ai>aj,显然有
f
[
j
]
≥
f
[
i
]
+
1
f[j]\ge f[i]+1
f[j]≥f[i]+1,
f
[
i
]
!
=
f
[
j
]
f[i]!=f[j]
f[i]!=f[j]。
复杂度 O ( 26 ∗ N ) O(26*N) O(26∗N)
// Problem: E2. String Coloring (hard version)
// Contest: Codeforces - Codeforces Round #617 (Div. 3)
// URL: https://codeforces.com/contest/1296/problem/E2
// Memory Limit: 256 MB
// Time Limit: 1000 ms
//
// Powered by CP Editor (https://cpeditor.org)
//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid (tr[u].l+tr[u].r>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;
//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;
const int N=1000010,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;
int n;
int f[N],mx[30];
char s[N];
int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);
scanf("%d%s",&n,s+1);
for(int i=1;i<=n;i++)
{
f[i]=1;
for(int j=25;j>s[i]-'a';j--)
f[i]=max(f[i],mx[j]+1);
mx[s[i]-'a']=max(mx[s[i]-'a'],f[i]);
}
printf("%d\n",*max_element(f+1,f+1+n));
for(int i=1;i<=n;i++) printf("%d ",f[i]);
puts("");
return 0;
}
/*
*/