Codeforces Round #622 (Div. 2) D. Happy New Year 状压dp

77 篇文章 0 订阅
6 篇文章 0 订阅
本文介绍了如何使用动态规划和离散化技术解决一个区间覆盖问题,其中每个孩子最多接收8个礼物。通过将区间离散化并转化为二进制状态,利用滚动数组优化,实现O(n*2^k)的时间复杂度求解。文章详细阐述了状态转移方程的设计,并提供了具体的代码实现。
摘要由CSDN通过智能技术生成

传送门

文章目录

题意:

在这里插入图片描述
n ≤ 1 e 5 , m ≤ 1 e 9 , k ≤ 8. n\le 1e5,m\le 1e9,k\le 8. n1e5,m1e9,k8.

思路:

注意到题目中保证了每个孩子至多收到 k k k个,且 k ≤ 8 k\le 8 k8,注意到这是题目保证的,并不是说这个孩子能收到很多,但是收到 k k k个就接受不了别的了,我理解错题意想了一晚上。
看到 k k k这么小,自然的想到状压了,复杂度 O ( n ∗ 2 k ) O(n*2^k) O(n2k)很完美。
发现区间很大,自然想到离散化。通过离散化, 我们可以将其分成若干个左闭右开的区间。这个时候就可以定义 f [ i ] [ j ] f[i][j] f[i][j]表示选到了第 i i i个区间,且该区间的状态为 j j j j j j是一个长度为 k k k的二进制,某一位 i i i 1 1 1表示第 i i i条线覆盖了这个区间。由于区间是左闭右开的区间,所以左端点才有信息存储,下面分情况讨论:
设当前状态为 j j j,其含有的 1 1 1的个数为 c n t cnt cnt,当前这段区间在第 k k k个。
当前需要加上一段区间:
( 1 ) (1) (1)如果 j j j的第 k − 1 k-1 k1位已经存在,那么应该从前一个状态不含这一位转移过来,即 f [ i ] [ j ] = f [ i − 1 ] [ j    x o r    1 < < k ] + l e n ∗ ( c n t   m o d   2 ) f[i][j]=f[i-1][j \ \ xor \ \ 1<<k]+len*(cnt\bmod 2) f[i][j]=f[i1][j  xor  1<<k]+len(cntmod2)
( 2 ) (2) (2)如果 j j j的第 k − 1 k-1 k1位不存在,那么应该从上一个 j j j的状态转移,即 f [ i ] [ j ] = f [ i − 1 ] [ j ] + l e n ∗ ( c n t   m o d   2 ) f[i][j]=f[i-1][j]+len*(cnt\bmod 2) f[i][j]=f[i1][j]+len(cntmod2)
当前需要减去一段区间:
( 1 ) (1) (1)如果 j j j k − 1 k-1 k1位已经存在,由于我们是要删掉他,所以应该将他置为 − I N F -INF INF,即 f [ i ] [ j ] = − I N F f[i][j]=-INF f[i][j]=INF
( 2 ) (2) (2)如果 j j j k − 1 k-1 k1位不存在,那么从上一个状态的 j j j j    x o r    1 < < k j\ \ xor\ \ 1<<k j  xor  1<<k二者大的一个转移过来,再加上 l e n ∗ ( c n t   m o d   2 ) len*(cnt\bmod 2) len(cntmod2)即可,即 f [ i ] [ j ] = m a x ( f [ i − 1 ] [ j ] , f [ i − 1 ] [ j    x o r    1 < < k ] ) + l e n ∗ ( c n t   m o d   2 ) f[i][j]=max(f[i-1][j],f[i-1][j \ \ xor \ \ 1<<k])+len*(cnt\bmod 2) f[i][j]=max(f[i1][j],f[i1][j  xor  1<<k])+len(cntmod2)

第一维直接滚动一下就好了,或者直接开一维,让后注意一下遍历的顺序就好啦,具体看代码吧。

// Problem: D. Happy New Year
// Contest: Codeforces - Codeforces Round #622 (Div. 2)
// URL: https://codeforces.com/contest/1313/problem/D
// Memory Limit: 512 MB
// Time Limit: 2000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid (tr[u].l+tr[u].r>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;

//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }

typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;

const int N=400010,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;

int n,m,k;
PII p[N];
vector<int>v;
int st[N];
LL f[2][(1<<8)+10];

int find(int x)
{
	return lower_bound(v.begin(),v.end(),x)-v.begin();
}

int main()
{
//	ios::sync_with_stdio(false);
//	cin.tie(0);

	int tot=0,op=0;
	scanf("%d%d%d",&n,&m,&k);
	for(int i=1;i<=n;i++)
	{
		int l,r; scanf("%d%d",&l,&r);
		v.pb(l); v.pb(r+1);
		p[++tot]={l,i}; p[++tot]={r+1,-i};
	}
	//for(int i=1;i<(1<<k);i++) f[0][i]=-INF;
	memset(f,-0x3f,sizeof(f));
	f[op][0]=0;
	sort(p+1,p+1+tot);
	LL ans=0;
	for(int i=1;i<=tot;i++) 
	{
		op^=1;
		int len=p[i+1].X-p[i].X;
		if(i==tot) len=0;
		int id=p[i].Y,pos;
		if(id>0) 
		{
			for(int j=0;j<k;j++) if(st[j]==0) { pos=j; st[j]=id; break; }
			for(int j=0;j<(1<<k);j++)
				if(j>>pos&1) f[op][j]=f[op^1][j^1<<pos]+len*__builtin_parity(j);
				else f[op][j]=f[op^1][j]+len*__builtin_parity(j);
		}
		else 
		{
			for(int j=0;j<k;j++) if(st[j]==-id) { pos=j; st[j]=0; break; }
			for(int j=0;j<(1<<k);j++)
				if(j>>pos&1) f[op][j]=-INF;
				else f[op][j]=max(f[op^1][j],f[op^1][j^1<<pos])+len*__builtin_parity(j);
		}
	}
	cout<<f[op][0]<<endl;
	/*
	for(int i=1;i<=tot;i++)
	{
		int len;
		if(i!=tot) len=p[i+1].X-p[i].X;
		else len=0;
		int id=p[i].Y,pos;
		if(id>0)
		{
			for(int i=0;i<k;i++) if(st[i]==0) { pos=i; st[i]=id; break; }
			for(int i=(1<<k)-1;i>=0;i--) 
				if(i>>pos&1) f[i]=f[i^1<<pos]+len*__builtin_parity(i);
				else f[i]=f[i]+len*__builtin_parity(i);
		}
		else 
		{
			for(int i=0;i<k;i++) if(st[i]==-id) { pos=i; st[i]=0; break; }
			for(int i=0;i<(1<<k);i++) 
				if(i>>pos&1) f[i]=INF;
				else f[i]=max(f[i],f[i^1<<pos])+len*__builtin_parity(i);
		}
	} 
	printf("%lld\n",f[0]);
	*/


	return 0;
}
/*

*/




评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值