题意:
有 n n n台电脑,你可以手动打开某个电脑,如果第 i − 1 , i + 1 i-1,i+1 i−1,i+1台电脑都打开了,那么第 i i i台电脑会自动打开。不能手动打开自动打开的电脑,问有多少种打开的方式使得所有电脑都开机。
思路:
首先考虑全都手动打开
n
n
n台电脑有多少种方案。
从
1
1
1开始,那么
1
1
1右边的所有电脑都必须依次打开,方案数是
C
(
n
−
1
,
0
)
C(n-1,0)
C(n−1,0)。
从
2
2
2开始,那么
2
2
2右边的所有电脑都必须依次打开,左边的电脑可以在保证顺序的情况下任意时刻打开,方案数
C
(
n
−
1
,
1
)
C(n-1,1)
C(n−1,1)。
以此类推,总方案是
C
(
n
−
1
,
0
)
+
C
(
n
−
1
,
1
)
+
.
.
.
+
C
(
n
−
1
,
n
−
1
)
=
2
n
−
1
C(n-1,0)+C(n-1,1)+...+C(n-1,n-1)=2^{n-1}
C(n−1,0)+C(n−1,1)+...+C(n−1,n−1)=2n−1。
再考虑电脑最终一定是一段手动开的,一个自动,一段手动,一段自动…一段手动。
那么定义
f
[
i
]
[
j
]
f[i][j]
f[i][j]表示第
i
i
i台电脑是手动开的,第
i
+
1
i+1
i+1台电脑是自动开的,手动打开了
j
j
j台电脑。
我们可以枚举多打开的电脑个数
k
k
k来转移,即
f
[
i
]
[
j
]
−
>
f
[
i
+
1
+
k
]
[
j
+
k
]
f[i][j]->f[i+1+k][j+k]
f[i][j]−>f[i+1+k][j+k],含义是
p
o
s
−
>
i
pos->i
pos−>i手动打开,
i
+
1
i+1
i+1自动打开,
i
+
2
−
>
i
+
1
+
k
i+2->i+1+k
i+2−>i+1+k手动打开。
由于多开了
k
k
k台电脑,那么按照上面结论,它有
2
k
−
1
2^{k-1}
2k−1个打开的方法。
由于前面已经打开了
j
j
j个了,我们可以从
j
+
k
j+k
j+k个位置选
k
k
k个位置来打开
k
k
k个电脑,所以乘一个
C
(
k
+
j
,
k
)
C(k+j,k)
C(k+j,k)即可。
转移方程为:
f
[
i
+
k
+
1
]
[
j
+
k
]
+
=
f
[
i
]
[
j
]
∗
2
k
−
1
∗
C
(
j
+
k
,
k
)
f[i+k+1][j+k]+=f[i][j]*2^{k-1}*C(j+k,k)
f[i+k+1][j+k]+=f[i][j]∗2k−1∗C(j+k,k)
//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid (tr[u].l+tr[u].r>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;
//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;
const int N=510,INF=0x3f3f3f3f;
const double eps=1e-6;
int n,mod;
LL c[N][N],pow2[N];
LL f[N][N];
int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);
scanf("%d%d",&n,&mod);
pow2[0]=1;
for(int i=1;i<N;i++) pow2[i]=pow2[i-1]*2%mod;
for(int i=0;i<N;i++)
for(int j=0;j<=i;j++)
{
if(j==0) { c[i][j]=1; continue; }
c[i][j]=c[i-1][j-1]+c[i-1][j];
c[i][j]%=mod;
}
for(int len=1;len<=n;len++)
{
f[len][len]=pow2[len-1];
for(int cnt=0;cnt<=len;cnt++)
for(int k=1;k+len<=n;k++)
(f[len+k+1][cnt+k]+=f[len][cnt]*c[cnt+k][k]%mod*pow2[k-1]%mod)%=mod;
}
LL ans=0;
for(int i=0;i<=n;i++) (ans+=f[n][i])%=mod;
printf("%lld\n",ans);
return 0;
}
/*
*/