Codeforces Global Round 14 E. Phoenix and Computers 思维 + dp

本文详细探讨了一类计算机科学中的问题,即如何利用动态规划策略解决电脑自动开启的方案计数。通过分析思路,阐述了从手动开启到自动开启的转换过程,以及如何建立状态转移方程。文章还介绍了组合计数在问题求解中的应用,如二项式系数的计算,并给出了一种高效的算法实现。整个解决方案不仅限于理论,还包括了实际的代码实现,对于理解动态规划和组合计数在实际问题中的应用具有指导意义。
摘要由CSDN通过智能技术生成

传送门

文章目录

题意:

n n n台电脑,你可以手动打开某个电脑,如果第 i − 1 , i + 1 i-1,i+1 i1,i+1台电脑都打开了,那么第 i i i台电脑会自动打开。不能手动打开自动打开的电脑,问有多少种打开的方式使得所有电脑都开机。

思路:

首先考虑全都手动打开 n n n台电脑有多少种方案。
1 1 1开始,那么 1 1 1右边的所有电脑都必须依次打开,方案数是 C ( n − 1 , 0 ) C(n-1,0) C(n1,0)
2 2 2开始,那么 2 2 2右边的所有电脑都必须依次打开,左边的电脑可以在保证顺序的情况下任意时刻打开,方案数 C ( n − 1 , 1 ) C(n-1,1) C(n1,1)
以此类推,总方案是 C ( n − 1 , 0 ) + C ( n − 1 , 1 ) + . . . + C ( n − 1 , n − 1 ) = 2 n − 1 C(n-1,0)+C(n-1,1)+...+C(n-1,n-1)=2^{n-1} C(n1,0)+C(n1,1)+...+C(n1,n1)=2n1
再考虑电脑最终一定是一段手动开的,一个自动,一段手动,一段自动…一段手动。
那么定义 f [ i ] [ j ] f[i][j] f[i][j]表示第 i i i台电脑是手动开的,第 i + 1 i+1 i+1台电脑是自动开的,手动打开了 j j j台电脑。
我们可以枚举多打开的电脑个数 k k k来转移,即 f [ i ] [ j ] − > f [ i + 1 + k ] [ j + k ] f[i][j]->f[i+1+k][j+k] f[i][j]>f[i+1+k][j+k],含义是 p o s − > i pos->i pos>i手动打开, i + 1 i+1 i+1自动打开, i + 2 − > i + 1 + k i+2->i+1+k i+2>i+1+k手动打开。
由于多开了 k k k台电脑,那么按照上面结论,它有 2 k − 1 2^{k-1} 2k1个打开的方法。
由于前面已经打开了 j j j个了,我们可以从 j + k j+k j+k个位置选 k k k个位置来打开 k k k个电脑,所以乘一个 C ( k + j , k ) C(k+j,k) C(k+j,k)即可。
转移方程为: f [ i + k + 1 ] [ j + k ] + = f [ i ] [ j ] ∗ 2 k − 1 ∗ C ( j + k , k ) f[i+k+1][j+k]+=f[i][j]*2^{k-1}*C(j+k,k) f[i+k+1][j+k]+=f[i][j]2k1C(j+k,k)

//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid (tr[u].l+tr[u].r>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;

//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }

typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;

const int N=510,INF=0x3f3f3f3f;
const double eps=1e-6;

int n,mod;
LL c[N][N],pow2[N];
LL f[N][N];

int main()
{
//	ios::sync_with_stdio(false);
//	cin.tie(0);

	scanf("%d%d",&n,&mod);
	pow2[0]=1;
	for(int i=1;i<N;i++) pow2[i]=pow2[i-1]*2%mod;
	for(int i=0;i<N;i++)
		for(int j=0;j<=i;j++)
		{
			if(j==0) { c[i][j]=1; continue; }
			c[i][j]=c[i-1][j-1]+c[i-1][j]; 
			c[i][j]%=mod;
		}
	for(int len=1;len<=n;len++)
	{
		f[len][len]=pow2[len-1];
		for(int cnt=0;cnt<=len;cnt++)
			for(int k=1;k+len<=n;k++)
				(f[len+k+1][cnt+k]+=f[len][cnt]*c[cnt+k][k]%mod*pow2[k-1]%mod)%=mod;
	}
	LL ans=0;
	for(int i=0;i<=n;i++) (ans+=f[n][i])%=mod;
	printf("%lld\n",ans);



	return 0;
}
/*

*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值