Codeforces Round #723 (Div. 2) D. Kill Anton 线段树 + 暴力

传送门

文章目录

题意:

给你一个只有 A N T O ANTO ANTO四个字母的字符串,你每次可以交换相邻两个,花费为 1 1 1,让后让你打乱字符串,使得将打乱的字符串还原为原来的字符串的花费最小。
n ≤ 1 e 5 n\le1e5 n1e5

思路:

打了这么长时间 a c m acm acm了,还能因为没开 L L LL LL挂题,赛后又交了将近一页,真是越来越菜了。
首先这个题通过打表以及第六感可以发现,将所有相同的字母放在一起是最优的,所以可以 4 ! 4! 4!枚举所有位置,让后 c h e c k check check一下取最大的花费即可,现在瓶颈就是在怎么快速求出花费来。
我们假设原来的串为 a a a,现在的串为 b b b,首先我们可以从头遍历 a a a,让后对于 a a a的每一个字符我们肯定都找其在 b b b中第一次出现的位置,用完之后删掉这个位置。可是我们将某一个删除的时候,他们的某些位置可能会变化,比如 a a a 1 1 1开始,初始的时候 b b b的位置是 1 , 2 , 3 , 4 , 5 1,2,3,4,5 1,2,3,4,5,现在将 4 4 4这个位置删掉,花费为 3 3 3,那么现在 b b b变为 1 , 2 , 3 , 5 1,2,3,5 1,2,3,5,下次需要选 3 3 3这里删掉的时候就会出现问题了,因为按照上面的话花费应该是 3 − 2 = 1 3-2=1 32=1,但是实际花费是 2 2 2,问题也很明显了,我们将 4 4 4删掉后,应该让 4 4 4前面的所有位置都 + 1 +1 +1,即变成 2 , 3 , 4 , 5 2,3,4,5 2,3,4,5即可,这个就很好维护了,用线段树实现区间加即可。
代码写的丑的一批。

// Problem: D. Kill Anton
// Contest: Codeforces - Codeforces Round #723 (Div. 2)
// URL: https://codeforces.com/contest/1526/problem/D
// Memory Limit: 512 MB
// Time Limit: 2000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid (tr[u].l+tr[u].r>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
#define int long long
using namespace std;

//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }

typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;

const int N=1000010,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;

string s,ps;
string mp[10];
int a[20];
vector<int>v[20];
struct Node {
	int l,r;
	int cnt,lazy;
}tr[N<<2];

void pushup(int u) {
	tr[u].cnt=tr[L].cnt+tr[R].cnt;
}

void pushdown(int u) {
	if(!tr[u].lazy) return;
	int lazy=tr[u].lazy; tr[u].lazy=0;
	tr[L].lazy+=lazy; tr[R].lazy+=lazy;
	tr[L].cnt+=lazy; tr[R].cnt+=lazy;
}

void build(int u,int l,int r) {
	tr[u]={l,r,1,0};
	if(l==r) {
		tr[u].cnt=l;
		return;
	}
	build(L,l,Mid); build(R,Mid+1,r);
	pushup(u);
} 

void change(int u,int l,int r,int c) {
	if(tr[u].l>=l&&tr[u].r<=r) {
		tr[u].cnt+=c;
		tr[u].lazy+=c;
		return;
	}
	if(l<=Mid) change(L,l,r,c);
	if(r>Mid) change(R,l,r,c);
	pushup(u);
}

int query(int u,int l,int r) {
	if(tr[u].l>=l&&tr[u].r<=r) return tr[u].cnt;
	int ans=0;
	pushdown(u);
	if(l<=Mid) ans+=query(L,l,r);
	if(r>Mid) ans+=query(R,l,r);
	return ans;
}

int check(string ps) {
	int ans=0;
	build(1,1,ps.length());
	for(int i=0;i<4;i++) v[i].clear();
	for(int i=s.length()-1;i>=0;i--) {
		if(ps[i]=='A') v[0].pb(i+1);
		else if(ps[i]=='N') v[1].pb(i+1);
		else if(ps[i]=='O') v[2].pb(i+1);
		else v[3].pb(i+1);
	}
	for(int i=0;i<s.length();i++) {
		int pos;
		if(s[i]=='A') pos=v[0].back(),v[0].pop_back();
		else if(s[i]=='N') pos=v[1].back(),v[1].pop_back();
		else if(s[i]=='O') pos=v[2].back(),v[2].pop_back();
		else pos=v[3].back(),v[3].pop_back();
		int now=query(1,pos,pos);
		//cout<<i+1<<' '<<now<<' '<<pos<<endl;
		ans+=abs(now-(i+1));
		change(1,1,pos-1,1);
	}
	return ans;
}

signed main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	
	int _; cin>>_;
	while(_--) {
		for(int i=0;i<4;i++) mp[i]="",a[i]=i;
		cin>>ps; s=ps;
		for(int i=0;i<ps.length();i++) {
			if(ps[i]=='A') mp[0]+='A';
			else if(ps[i]=='N') mp[1]+='N';
			else if(ps[i]=='O') mp[2]+='O';
			else mp[3]+='T';
		}
		int ans=-1;
		string res;
		do {
			string now="";
			for(int i=0;i<4;i++) now+=mp[a[i]];
			int x=check(now);
			if(x>ans) ans=x,res=now;
		}while(next_permutation(a,a+4));
		cout<<res<<endl;
	}



	return 0;
}
/*

*/







 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值