FZU - 2042 The Mad Mathematician 数位dp + 算贡献

传送门

文章目录

题意:

s u m sum sum
在这里插入图片描述
a , b , c , d , e ≤ 1 e 18 a,b,c,d,e\le1e18 a,b,c,d,e1e18

思路:

这是一篇无从考究的题解,因为fzu现在进不去。
看到这种题直接考虑数位 d p dp dp,对于 [ A , B ] , [ C , D ] [A,B],[C,D] [A,B],[C,D]两个区间我们不太好直接处理,但是我们可以容斥一下,即 [ 0 , B ] [ 0 , D ] − [ 0 , A − 1 ] [ 0 , D ] − [ 0 , B ] [ 0 , C − 1 ] + [ 0 , A − 1 ] [ 0 , C − 1 ] [0,B][0,D]-[0,A-1][0,D]-[0,B][0,C-1]+[0,A-1][0,C-1] [0,B][0,D][0,A1][0,D][0,B][0,C1]+[0,A1][0,C1]
假设我们求的 [ 0 , B ] [ 0 , D ] [0,B][0,D] [0,B][0,D],我们设计状态 f [ p o s ] [ f l a g 1 ] [ f l a g 2 ] [ f l a g 3 ] f[pos][flag1][flag2][flag3] f[pos][flag1][flag2][flag3]
( 1 ) f l a g 1 (1)flag1 (1)flag1表示 i < B i<B i<B
( 2 ) f l a g 2 (2)flag2 (2)flag2表示 j < D j<D j<D
( 3 ) f l a g 3 (3)flag3 (3)flag3表示 ( i    x o r    j ) > E (i \ \ xor \ \ j) >E (i  xor  j)>E
到目前为止,如果这个题改成求方案数,就可以直接秒了,但是改不得。
d p 1 ( p o s ) dp1(pos) dp1(pos)为从 p o s pos pos位开始的方案数, d p 2 ( p o s ) dp2(pos) dp2(pos)为从 p o s pos pos位开始的贡献,考虑如何求贡献,我们直接按位来考虑,假设当前到了第 p o s pos pos位,且当前位 ( i    x o r    j ) = = 1 (i \ \ xor \ \ j)==1 (i  xor  j)==1,那么当前位的贡献就是 ( 1 l l < < p o s ) ∗ d p 1 ( p o s − 1 ) + d p 2 ( p o s − 1 ) (1ll<<pos)*dp1(pos-1)+dp2(pos-1) (1ll<<pos)dp1(pos1)+dp2(pos1),这个显然可以维护一个 p a i r pair pair进行转移。
所以还是一个裸的数位 d p dp dp
代码也比较好写辣,一定要注意取模,比如代码 68 68 68行, 1 l l < < p o s 1ll<<pos 1ll<<pos一定要取模,不然炸 L L LL LL了,因为这个对拍的时候一直过不了大样例。。。

// Problem: The Mad Mathematician
// Contest: Virtual Judge - FZU
// URL: https://vjudge.net/problem/FZU-2042
// Memory Limit: 32 MB
// Time Limit: 1000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#include<random>
#include<cassert>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid ((tr[u].l+tr[u].r)>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;

//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }

typedef long long LL;
typedef unsigned long long ULL;
typedef pair<LL,LL> PII;

const int N=110,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;

LL a,b,c,d,e;
int A[N],B[N],E[N];
PII f[70][2][2][2];

PII dp(int pos,int flag1,int flag2,int flag3) {
	if(pos==-1) return {flag3,0};
	if(f[pos][flag1][flag2][flag3].X!=-1) return f[pos][flag1][flag2][flag3];
	int x=flag1? 1:A[pos];
	int y=flag2? 1:B[pos];
	int z=flag3? 0:E[pos];
	PII ans={0,0};
	for(int i=0;i<=x;i++) {
		for(int j=0;j<=y;j++) {
			if((i^j)<z) continue;
			PII now=dp(pos-1,flag1||i<x,flag2||j<y,flag3||((i^j)>z));
			ans.X+=now.X; ans.X%=mod;
			ans.Y+=now.Y;
			if((i^j)==1) ans.Y+=(1ll*(1ll<<pos)%mod)*now.X%mod;
			ans.Y%=mod;
		}
	}
	return f[pos][flag1][flag2][flag3]=ans;
}

LL solve(LL x,LL y) {
	if(x<=0||y<=0) return 0;
	for(int i=62;i>=0;i--) {
		A[i]=x>>i&1;
		B[i]=y>>i&1;
	}
	memset(f,-1,sizeof(f));
	return dp(62,0,0,0).Y%mod;
}

int main()
{
//	ios::sync_with_stdio(false);
//	cin.tie(0);
	
	//rd_wa();
	int _; scanf("%d",&_);
	for(int __=1;__<=_;__++) {
		scanf("%lld%lld%lld%lld%lld",&a,&b,&c,&d,&e);
		for(int i=62;i>=0;i--) E[i]=e>>i&1;
		LL ans=solve(b,d)%mod; 
		ans-=solve(a-1,d); ans%=mod; ans+=mod; ans%=mod;
		ans-=solve(b,c-1); ans%=mod; ans+=mod; ans%=mod;
		ans+=solve(a-1,c-1); ans%=mod; ans+=mod; ans%=mod;
		printf("Case %d: %lld\n",__,ans%mod);
	}



	return 0;
}
/*
1
0 200000300000002 0 200000300002322 3
6860360
53360
*/









评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值