题意:
求
s
u
m
sum
sum。
a
,
b
,
c
,
d
,
e
≤
1
e
18
a,b,c,d,e\le1e18
a,b,c,d,e≤1e18
思路:
这是一篇无从考究的题解,因为fzu现在进不去。
看到这种题直接考虑数位
d
p
dp
dp,对于
[
A
,
B
]
,
[
C
,
D
]
[A,B],[C,D]
[A,B],[C,D]两个区间我们不太好直接处理,但是我们可以容斥一下,即
[
0
,
B
]
[
0
,
D
]
−
[
0
,
A
−
1
]
[
0
,
D
]
−
[
0
,
B
]
[
0
,
C
−
1
]
+
[
0
,
A
−
1
]
[
0
,
C
−
1
]
[0,B][0,D]-[0,A-1][0,D]-[0,B][0,C-1]+[0,A-1][0,C-1]
[0,B][0,D]−[0,A−1][0,D]−[0,B][0,C−1]+[0,A−1][0,C−1]。
假设我们求的
[
0
,
B
]
[
0
,
D
]
[0,B][0,D]
[0,B][0,D],我们设计状态
f
[
p
o
s
]
[
f
l
a
g
1
]
[
f
l
a
g
2
]
[
f
l
a
g
3
]
f[pos][flag1][flag2][flag3]
f[pos][flag1][flag2][flag3]
(
1
)
f
l
a
g
1
(1)flag1
(1)flag1表示
i
<
B
i<B
i<B。
(
2
)
f
l
a
g
2
(2)flag2
(2)flag2表示
j
<
D
j<D
j<D。
(
3
)
f
l
a
g
3
(3)flag3
(3)flag3表示
(
i
x
o
r
j
)
>
E
(i \ \ xor \ \ j) >E
(i xor j)>E
到目前为止,如果这个题改成求方案数,就可以直接秒了,但是改不得。
设
d
p
1
(
p
o
s
)
dp1(pos)
dp1(pos)为从
p
o
s
pos
pos位开始的方案数,
d
p
2
(
p
o
s
)
dp2(pos)
dp2(pos)为从
p
o
s
pos
pos位开始的贡献,考虑如何求贡献,我们直接按位来考虑,假设当前到了第
p
o
s
pos
pos位,且当前位
(
i
x
o
r
j
)
=
=
1
(i \ \ xor \ \ j)==1
(i xor j)==1,那么当前位的贡献就是
(
1
l
l
<
<
p
o
s
)
∗
d
p
1
(
p
o
s
−
1
)
+
d
p
2
(
p
o
s
−
1
)
(1ll<<pos)*dp1(pos-1)+dp2(pos-1)
(1ll<<pos)∗dp1(pos−1)+dp2(pos−1),这个显然可以维护一个
p
a
i
r
pair
pair进行转移。
所以还是一个裸的数位
d
p
dp
dp。
代码也比较好写辣,一定要注意取模,比如代码
68
68
68行,
1
l
l
<
<
p
o
s
1ll<<pos
1ll<<pos一定要取模,不然炸
L
L
LL
LL了,因为这个对拍的时候一直过不了大样例。。。
// Problem: The Mad Mathematician
// Contest: Virtual Judge - FZU
// URL: https://vjudge.net/problem/FZU-2042
// Memory Limit: 32 MB
// Time Limit: 1000 ms
//
// Powered by CP Editor (https://cpeditor.org)
//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#include<random>
#include<cassert>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid ((tr[u].l+tr[u].r)>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;
//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<LL,LL> PII;
const int N=110,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;
LL a,b,c,d,e;
int A[N],B[N],E[N];
PII f[70][2][2][2];
PII dp(int pos,int flag1,int flag2,int flag3) {
if(pos==-1) return {flag3,0};
if(f[pos][flag1][flag2][flag3].X!=-1) return f[pos][flag1][flag2][flag3];
int x=flag1? 1:A[pos];
int y=flag2? 1:B[pos];
int z=flag3? 0:E[pos];
PII ans={0,0};
for(int i=0;i<=x;i++) {
for(int j=0;j<=y;j++) {
if((i^j)<z) continue;
PII now=dp(pos-1,flag1||i<x,flag2||j<y,flag3||((i^j)>z));
ans.X+=now.X; ans.X%=mod;
ans.Y+=now.Y;
if((i^j)==1) ans.Y+=(1ll*(1ll<<pos)%mod)*now.X%mod;
ans.Y%=mod;
}
}
return f[pos][flag1][flag2][flag3]=ans;
}
LL solve(LL x,LL y) {
if(x<=0||y<=0) return 0;
for(int i=62;i>=0;i--) {
A[i]=x>>i&1;
B[i]=y>>i&1;
}
memset(f,-1,sizeof(f));
return dp(62,0,0,0).Y%mod;
}
int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);
//rd_wa();
int _; scanf("%d",&_);
for(int __=1;__<=_;__++) {
scanf("%lld%lld%lld%lld%lld",&a,&b,&c,&d,&e);
for(int i=62;i>=0;i--) E[i]=e>>i&1;
LL ans=solve(b,d)%mod;
ans-=solve(a-1,d); ans%=mod; ans+=mod; ans%=mod;
ans-=solve(b,c-1); ans%=mod; ans+=mod; ans%=mod;
ans+=solve(a-1,c-1); ans%=mod; ans+=mod; ans%=mod;
printf("Case %d: %lld\n",__,ans%mod);
}
return 0;
}
/*
1
0 200000300000002 0 200000300002322 3
6860360
53360
*/