Codeforces Round #588 (Div. 2) E. Kamil and Making a Stream 数学 + 暴力

传送门

文章目录

题意:

给你一颗树,其中根是 1 1 1,每个点有一个点权,求每个点到根的所有路径的 g c d gcd gcd之和。
n ≤ 1 e 5 n\le1e5 n1e5

思路:

一看到以为是个点分治,让后发现不是任意点对所以显然不能用点分治来做。
后来想了半天也只想到一个暴力,没想到还真是个暴力。
考虑从根到点 i i i的路径上同的 g c d gcd gcd个数,可以证明最多有 l o g 2 ( 1 0 12 ) log_2(10^{12}) log2(1012)个,所以每个点都继承一下父节点的值即可,由于需要用 m a p map map维护,所以复杂度 O ( n l o g 2 2 ( 1 0 12 ) ) O(nlog^2_2(10^{12})) O(nlog22(1012))

// Problem: E. Kamil and Making a Stream
// Contest: Codeforces - Codeforces Round #588 (Div. 2)
// URL: https://codeforces.com/contest/1230/problem/E
// Memory Limit: 768 MB
// Time Limit: 4000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#include<random>
#include<cassert>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid ((tr[u].l+tr[u].r)>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;

//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }

typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;

const int N=1000010,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;

int n;
vector<int>v[N];
vector<pair<LL,LL>>all[N];
LL a[N],ans;
map<LL,int>mp;

void del() {
	if(ans>=mod) ans-=mod;
}

void dfs(int u,int f) {
	mp.clear();
	ans+=a[u]; del();
	for(auto y:all[f]) {
		ans+=y.Y*__gcd(y.X,a[u])%mod; ans%=mod;
		mp[__gcd(y.X,a[u])]+=y.Y;
	}
	mp[a[u]]++;
	for(auto x:mp) all[u].pb({x.X,x.Y});
	for(auto x:v[u]) {
		if(x==f) continue;
		dfs(x,u);
	}
}

int main()
{
//	ios::sync_with_stdio(false);
//	cin.tie(0);
	
	cin>>n;
	for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
	for(int i=1;i<=n-1;i++) {
		int a,b; scanf("%d%d",&a,&b);
		v[a].pb(b); v[b].pb(a);
	}
	dfs(1,0);
	printf("%lld\n",ans%mod);
	
	


	return 0;
}
/*

*/









评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值