Codeforces Round #592 (Div. 2) G. Running in Pairs 构造(水)

传送门

文章目录

题意:

在这里插入图片描述

思路:

史上最水 G G G题,没有之一。
考虑最小的情况如何构造,显然就是让 a , b a,b a,b 1 − n 1-n 1n依次排列即可,这样的最小值为 n ∗ ( n + 1 ) 2 \frac{n*(n+1)}{2} 2n(n+1),如果 m m m小于他,显然无解,否则一定能构造一组解。
考虑将 a a a置为从 1 − n 1-n 1n的排列,让后 b b b初始也为 1 − n 1-n 1n的排列,即 a , b = 1 , 2 , . . . , n a,b=1,2,...,n a,b=1,2,...,n。考虑将 b b b的最后一个数 x x x a a a x − 1 x-1 x1的位置向前移动,一直到 b b b已经填完的位置之前,每移动一位即可将贡献增加 1 1 1,所以一直这样移动,最后从 1 − n 1-n 1n填上空位置即可。

// Problem: G. Running in Pairs
// Contest: Codeforces - Codeforces Round #592 (Div. 2)
// URL: https://codeforces.com/contest/1244/problem/G
// Memory Limit: 256 MB
// Time Limit: 1000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#include<random>
#include<cassert>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid ((tr[u].l+tr[u].r)>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;

//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }

typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;

const int N=1000010,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;

LL n,m;
int a[N],b[N];
int vis[N];

int main()
{
//	ios::sync_with_stdio(false);
//	cin.tie(0);
	
	cin>>n>>m;
	if(m<n*(n+1)/2) puts("-1");
	else {
		LL sum=0;
		for(int i=1;i<=n;i++) a[i]=i;
		int st=0,ed=n;
		m-=n*(n+1)/2;
		for(int i=n;i>=1;i--) {
			int now=i-1;
			if(now<=st) break;
			int cnt=now-st;
			if(m-cnt>=0) m-=cnt,b[++st]=i;
			else {
				b[now-m+1]=i;
				for(int j=1,t=1;j<=n;j++) if(!b[j]) b[j]=t++;
				break;
			}
		} 
		int now=1;
		for(int i=1;i<=n;i++) if(!b[i]) b[i]=now++;
		for(int i=1;i<=n;i++) sum+=max(b[i],a[i]);
		printf("%lld\n",sum);
		for(int i=1;i<=n;i++) printf("%d ",a[i]); puts("");
		for(int i=1;i<=n;i++) printf("%d ",b[i]); puts("");
	}



	return 0;
}
/*

*/









评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值