P4173 残缺的字符串 FFT匹配含有通配符的字符串

传送门

文章目录

题意:

给你两个长度为 m , n m,n m,n的串 a , b a,b a,b,问你 b b b串中每个长度为 m m m的连续字串能否与 a a a完全匹配,其中含有通配符 ∗ * ,输出每个位置的开头。
n , m ≤ 3 e 5 n,m\le3e5 n,m3e5

思路:

比较容易想到魔改 k m p kmp kmp,但是你会发现怎么改都 a a a不掉这个题。
先不考虑通配符,定义 c ( x , y ) c(x,y) c(x,y)表示 a x − b y a_x-b_y axby,显然 c ( x , y ) = 0 c(x,y)=0 c(x,y)=0时代表 a x a_x ax b y b_y by这个位置匹配。
定义函数 f ( x ) = ∑ i = 0 m − 1 C ( i , x − m + i + 1 ) f(x)=\sum_{i=0}^{m-1}C(i,x-m+i+1) f(x)=i=0m1C(i,xm+i+1),我们发现不能根据 f ( x ) f(x) f(x)是否为 0 0 0来判断是否匹配,因为有 a b , b a ab,ba ab,ba这种串。不难发现问题就是出现了负数,我们考虑将其加个绝对值?绝对值不是很好处理,所以考虑给他加一个平方,即 f ( x ) = ∑ i = 0 m − 1 ( A ( i ) − B ( x − m + i + 1 ) ) 2 f(x)=\sum_{i=0}^{m-1}(A(i)-B(x-m+i+1))^2 f(x)=i=0m1(A(i)B(xm+i+1))2,这个狮子已经很像 F F T FFT FFT了,考虑将其展开, f ( x ) = ∑ i = 0 m − 1 A ( i ) 2 + ∑ i = 0 m − 1 B ( x − m + i + 1 ) 2 − 2 ∗ ∑ i = 0 m − 1 A ( i ) ∗ B ( x − m + i + 1 ) f(x)=\sum_{i=0}^{m-1}A(i)^2+\sum_{i=0}^{m-1}B(x-m+i+1)^2-2*\sum_{i=0}^{m-1}A(i)*B(x-m+i+1) f(x)=i=0m1A(i)2+i=0m1B(xm+i+1)22i=0m1A(i)B(xm+i+1),前面两项很好处理,只有最后这一项不是很好看,考虑将 A A A串翻转一下,即 ∑ i = 0 m − 1 A ( m − i − 1 ) ∗ B ( x − m + i + 1 ) \sum_{i=0}^{m-1}A(m-i-1)*B(x-m+i+1) i=0m1A(mi1)B(xm+i+1),观察一下,这不就是个卷积!即 g ( x ) = ∑ i + j = x A ( i ) ∗ B ( j ) g(x)=\sum_{i+j=x}A(i)*B(j) g(x)=i+j=xA(i)B(j),所以卷一下就好啦。
有通配符怎么办呢?
按照上面的思路,我们是将相等的数变成了 0 0 0,所以我们只需要改一下 C ( x , y ) C(x,y) C(x,y)的定义,改为 C ( x , y ) = ( A x − B y ) 2 A x B y C(x,y)=(A_x-B_y)^2A_xB_y C(x,y)=(AxBy)2AxBy,即当某个位置是通配符的时候,将这个位置的 A , B A,B A,B都赋值为 0 0 0即可。
推导方法与上面相同,这里直接给出答案: f ( x ) = ∑ i + j = x A ( x ) 3 B ( x ) + ∑ i + j = x A ( x ) B ( x ) 3 − 2 ∗ ∑ i + j = x A ( x ) 2 B ( x ) 2 f(x)=\sum_{i+j=x}A(x)^3B(x)+\sum_{i+j=x}A(x)B(x)^3-2*\sum_{i+j=x}A(x)^2B(x)^2 f(x)=i+j=xA(x)3B(x)+i+j=xA(x)B(x)32i+j=xA(x)2B(x)2
6 6 6次即可。
小优化:由于最终只用到了前 n n n项,所以卷的长度定义为 > = n >=n >=n的最小 2 2 2的幂次即可。
不加这个优化很可能过不了,需要换 N T T NTT NTT

// Problem: P4173 残缺的字符串
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P4173
// Memory Limit: 128 MB
// Time Limit: 1000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#include<random>
#include<cassert>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid ((tr[u].l+tr[u].r)>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;

//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }

typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;

const int N=6000010,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6,PI=acos(-1);

int n,m;
int rev[N];
int bit,limit;
int A[N],B[N];
char s1[N],s2[N];
double p1[N],p2[N];

struct Complex {
	double x,y;
	Complex operator + (const Complex& t) const { return {x+t.x,y+t.y}; }
	Complex operator - (const Complex& t) const { return {x-t.x,y-t.y}; }
	Complex operator * (const Complex& t) const { return {x*t.x-y*t.y,x*t.y+y*t.x}; } 
}a[N],b[N],c[N],d[N],ans[N];

void fft(Complex a[],int inv) {
	for(int i=0;i<limit;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
	for(int mid=1;mid<limit;mid<<=1) {
		Complex w1=Complex({p1[mid],inv*p2[mid]});
		for(int i=0;i<limit;i+=mid*2) {
			Complex wk=Complex({1,0});
			for(int j=0;j<mid;j++,wk=wk*w1) {
				Complex x=a[i+j],y=wk*a[i+j+mid];
				a[i+j]=x+y; a[i+j+mid]=x-y;
			}
		}
	}
}

int main()
{
//	ios::sync_with_stdio(false);
//	cin.tie(0);

	cin>>m>>n>>s1>>s2;
	for(int i=0;i<m;i++) A[i]=s1[i]=='*'? 0:s1[i]-'a'+1;
	for(int i=0;i<n;i++) B[i]=s2[i]=='*'? 0:s2[i]-'a'+1;
	reverse(A,A+m);
	while((1<<bit)<=n) bit++;
	limit=1<<bit;
	for(int i=0;i<limit;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
	for(int mid=1;mid<limit;mid<<=1) p1[mid]=cos(PI/mid),p2[mid]=sin(PI/mid);

	for(int i=0;i<m;i++) a[i]={1.0*A[i]*A[i]*A[i],0},c[i]={1.0*A[i]*A[i],0};
	for(int i=0;i<n;i++) b[i]={1.0*B[i],0},d[i]={1.0*B[i]*B[i],0};
	fft(a,1); fft(b,1); 
	fft(c,1); fft(d,1);
	Complex now={2,0};
	for(int i=0;i<limit;i++) ans[i]=ans[i]+a[i]*b[i]-c[i]*d[i]*now;
	for(int i=0;i<limit;i++) a[i]=b[i]={0,0};
	for(int i=0;i<m;i++) a[i]={1.0*A[i],0};
	for(int i=0;i<n;i++) b[i]={1.0*B[i]*B[i]*B[i],0};
	fft(a,1); fft(b,1); 
	for(int i=0;i<limit;i++) ans[i]=ans[i]+a[i]*b[i];
	fft(ans,-1);
	vector<int>v;
	for(int i=m-1;i<n;i++) if((fabs(ans[i].x/limit))<0.5) v.pb(i-m+2);
	printf("%d\n",v.size());
	for(auto x:v) printf("%d ",x);





	return 0;
}
/*

*/









评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值