Educational Codeforces Round 16 C. Magic Odd Square 矩阵构造

该博客探讨了一种构造n*n矩阵的策略,使得每行、每列和主对角线的数字和均为奇数。通过创建一个菱形结构并填充奇数,确保了每个方向上都有奇数个奇数,从而满足条件。此外,还提到了可以直接使用幻方来解决此问题。代码示例展示了如何实现这一构造过程。
摘要由CSDN通过智能技术生成

传送门

文章目录

题意:

给你一个奇数 n n n,让你构造一个 n ∗ n n*n nn的矩阵,矩阵的每个位置依次填上 [ 1 , n ∗ n ] 之 内 的 数 [1,n*n]之内的数 [1,nn],满足每行、每列、以及主对角线的和都是奇数。

n ≤ 49 n\le49 n49

思路:

又是一个不能看范围的构造题。

由于每行、每列、主对角线和都需要是奇数,所以需要保证要加的数有奇数个奇数才可以,再进一步发现有 n ∗ n 2 + 1 \frac{n*n}{2}+1 2nn+1个奇数,我们考虑构造一个菱形,比如下面这个图

请添加图片描述

我们考虑将菱形内的所有数都填上奇数,其他位置都是偶数,这样构造出来的矩阵一定是合法的。

因为它保证了每行、每列、主对角线都有奇数个奇数。

貌似不需要费这么大劲,直接构造一个幻方即可。

// Problem: C. Magic Odd Square
// Contest: Codeforces - Educational Codeforces Round 16
// URL: https://codeforces.com/problemset/problem/710/C
// Memory Limit: 256 MB
// Time Limit: 1000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#include<random>
#include<cassert>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid ((tr[u].l+tr[u].r)>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;

//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }

typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;

const int N=1000010,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;

int n;
int a[100][100];

int main()
{
//	ios::sync_with_stdio(false);
//	cin.tie(0);

	cin>>n;
	int now=1;
	for(int i=1;i<=n;i++) {
		if(i<=n/2+1) {
			for(int j=n/2+1-i+1,len=i*2-1;len;j++,len--) 
				a[i][j]=now,now+=2;
		} else {
			for(int j=i-n/2,len=(n-i)*2+1;len;j++,len--) 
				a[i][j]=now,now+=2;
		}
	}
	now=2;
	for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) if(!a[i][j]) a[i][j]=now,now+=2;
	for(int i=1;i<=n;i++) {
		for(int j=1;j<=n;j++) {
			printf("%d ",a[i][j]);
		}
		puts("");
	}
	


	return 0;
}
/*

*/









评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值