题意:
有一颗 n n n个节点的树,其中一个简单路径集合被称为 k k k合法当且仅当:
树的每个节点至多属于一条路径,且每条路径恰好包含 k k k个点。
对于 k ∈ [ 1 , n ] k\in [1,n] k∈[1,n],求 k k k合法路径集合最多路径个数,即设 k k k合法路径集合为 S S S,求最大的 ∣ S ∣ |S| ∣S∣。
2 ≤ n ≤ 1 e 5 2\le n\le 1e5 2≤n≤1e5
思路:
考虑每次用 d p dp dp来 O ( n ) O(n) O(n)来求,记一个最大值和次大值,让后就是比较常规的 d p dp dp了,这样的复杂度是 O ( n 2 ) O(n^2) O(n2)的。
考虑到当 k ∈ [ n , n ] k\in [\sqrt n,n] k∈[n,n]的时候,答案不会超过 n \sqrt n n个,也就是每个答案有可能很长一段连续的都是这个答案,且答案递减,所以这个东西有二分的性质。
考虑根号分治,对于 k ∈ [ 1 , n ] k\in [1,\sqrt n] k∈[1,n]的情况,我们直接暴力求,复杂度 O ( n n ) O(n\sqrt n) O(nn)。对于 k ∈ [ n , n ] k\in [\sqrt n,n] k∈[n,n],我们每次二分答案所属区间,复杂度 O ( n n l o g n ) O(n\sqrt n logn) O(nnlogn)。
直接写会 t t t掉,毕竟这个复杂度还是很高的,所以考虑将 d p dp dp的 d f s dfs dfs拿出来 d f s dfs dfs序,循环跑一下,这样会快很多,可以通过。
// Problem: D. You Are Given a Tree
// Contest: Codeforces - Codeforces Round #507 (Div. 1, based on Olympiad of Metropolises)
// URL: https://codeforces.com/problemset/problem/1039/D
// Memory Limit: 512 MB
// Time Limit: 7000 ms
//
// Powered by CP Editor (https://cpeditor.org)
//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#include<random>
#include<cassert>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid ((tr[u].l+tr[u].r)>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;
//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;
const int N=100010,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;
int n;
int ans[N],block;
vector<int>v[N];
int dfn[N],tot,fa[N],id[N];
void dfs(int u,int f) {
int mx1=0,mx2=0;
int now=0;
fa[u]=f;
dfn[u]=++tot;
for(auto x:v[u]) {
if(x==f) continue;
dfs(x,u);
// now+=y;
// if(mx1<len[x]) mx2=mx1,mx1=len[x];
// else if(mx2<len[x]) mx2=len[x];
}
// if(mx1+mx2+1>=k) now++,len[u]=0;
// else len[u]=mx1+1;
// return now;
}
int f[N],mx1[N],mx2[N];
int len[N];
int solve(int k) {
if(ans[k]!=-1) return ans[k];
for(int i=0;i<=n;i++) {
mx1[i]=mx2[i]=0;
f[i]=0;len[i]=0;
}
for(int i=1;i<=n;i++) {
int now=id[i];
int to=fa[now];
if(mx1[now]+mx2[now]+1>=k) {
f[now]++; len[now]=0;
} else len[now]=mx1[now]+1;
f[to]+=f[now];
if(mx1[to]<len[now]) {
mx2[to]=mx1[to];
mx1[to]=len[now];
} else if(mx2[to]<len[now]) {
mx2[to]=len[now];
}
}
return ans[0]=f[0];
}
bool cmp(int a,int b) {
return dfn[a]>dfn[b];
}
int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);
memset(ans,-1,sizeof(ans));
scanf("%d",&n); block=sqrt(n*log(n)/log(2));
for(int i=1;i<=n-1;i++) {
int a,b; scanf("%d%d",&a,&b);
v[a].pb(b); v[b].pb(a);
}
dfs(1,0);
for(int i=1;i<=n;i++) ans[i]=-1,id[i]=i;
sort(id+1,id+1+n,cmp);
for(int i=1;i<=block;i++) {
ans[i]=solve(i);
}
int pre=block+1;
for(int _=1;pre<=n;_++) {
int l=pre,r=n,ne,val;
val=solve(l);
while(l<=r) {
int mid=(l+r)>>1;
if(solve(mid)<val) r=mid-1;
else l=mid+1,ne=mid;
}
for(int i=pre;i<=ne;i++) ans[i]=solve(pre);
pre=ne+1;
}
for(int i=1;i<=n;i++) printf("%d\n",ans[i]);
return 0;
}
/*
*/