Codeforces Round #507 (Div. 1) D. You Are Given a Tree 根号分治 + dp

85 篇文章 1 订阅
15 篇文章 1 订阅

传送门

题意:

有一颗 n n n个节点的树,其中一个简单路径集合被称为 k k k合法当且仅当:

树的每个节点至多属于一条路径,且每条路径恰好包含 k k k个点。

对于 k ∈ [ 1 , n ] k\in [1,n] k[1,n],求 k k k合法路径集合最多路径个数,即设 k k k合法路径集合为 S S S,求最大的 ∣ S ∣ |S| S

2 ≤ n ≤ 1 e 5 2\le n\le 1e5 2n1e5

思路:

考虑每次用 d p dp dp O ( n ) O(n) O(n)来求,记一个最大值和次大值,让后就是比较常规的 d p dp dp了,这样的复杂度是 O ( n 2 ) O(n^2) O(n2)的。

考虑到当 k ∈ [ n , n ] k\in [\sqrt n,n] k[n ,n]的时候,答案不会超过 n \sqrt n n 个,也就是每个答案有可能很长一段连续的都是这个答案,且答案递减,所以这个东西有二分的性质。

考虑根号分治,对于 k ∈ [ 1 , n ] k\in [1,\sqrt n] k[1,n ]的情况,我们直接暴力求,复杂度 O ( n n ) O(n\sqrt n) O(nn )。对于 k ∈ [ n , n ] k\in [\sqrt n,n] k[n ,n],我们每次二分答案所属区间,复杂度 O ( n n l o g n ) O(n\sqrt n logn) O(nn logn)

直接写会 t t t掉,毕竟这个复杂度还是很高的,所以考虑将 d p dp dp d f s dfs dfs拿出来 d f s dfs dfs序,循环跑一下,这样会快很多,可以通过。

// Problem: D. You Are Given a Tree
// Contest: Codeforces - Codeforces Round #507 (Div. 1, based on Olympiad of Metropolises)
// URL: https://codeforces.com/problemset/problem/1039/D
// Memory Limit: 512 MB
// Time Limit: 7000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#include<random>
#include<cassert>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid ((tr[u].l+tr[u].r)>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;

//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }

typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;

const int N=100010,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;

int n;
int ans[N],block;
vector<int>v[N];
int dfn[N],tot,fa[N],id[N];

void dfs(int u,int f) {
	int mx1=0,mx2=0;
	int now=0;
	fa[u]=f;
	dfn[u]=++tot;
	for(auto x:v[u]) {
		if(x==f) continue;
		dfs(x,u);
		// now+=y;
		// if(mx1<len[x]) mx2=mx1,mx1=len[x];
		// else if(mx2<len[x]) mx2=len[x];
	}
	// if(mx1+mx2+1>=k) now++,len[u]=0;
	// else len[u]=mx1+1;
	// return now;
}

int f[N],mx1[N],mx2[N];
int len[N];

int solve(int k) {
	if(ans[k]!=-1) return ans[k];
	for(int i=0;i<=n;i++) {
		mx1[i]=mx2[i]=0;
		f[i]=0;len[i]=0;
	}
	for(int i=1;i<=n;i++) {
		int now=id[i];
		int to=fa[now];
		if(mx1[now]+mx2[now]+1>=k) {
			f[now]++; len[now]=0;
		} else len[now]=mx1[now]+1;
		f[to]+=f[now];
		if(mx1[to]<len[now]) {
			mx2[to]=mx1[to];
			mx1[to]=len[now];
		} else if(mx2[to]<len[now]) {
			mx2[to]=len[now];
		}
	}
	return ans[0]=f[0];
}

bool cmp(int a,int b) {
	return dfn[a]>dfn[b];
} 

int main()
{
//	ios::sync_with_stdio(false);
//	cin.tie(0);

	memset(ans,-1,sizeof(ans));
	scanf("%d",&n); block=sqrt(n*log(n)/log(2));
	for(int i=1;i<=n-1;i++) {
		int a,b; scanf("%d%d",&a,&b);
		v[a].pb(b); v[b].pb(a);
	}
	dfs(1,0);
	for(int i=1;i<=n;i++) ans[i]=-1,id[i]=i;
	sort(id+1,id+1+n,cmp);
	for(int i=1;i<=block;i++) {
		ans[i]=solve(i);
	}
	int pre=block+1;
	for(int _=1;pre<=n;_++) {
		int l=pre,r=n,ne,val;
		val=solve(l);
		while(l<=r) {
			int mid=(l+r)>>1;
			if(solve(mid)<val) r=mid-1;
			else l=mid+1,ne=mid;
		}
		for(int i=pre;i<=ne;i++) ans[i]=solve(pre);
		pre=ne+1; 
	}
	for(int i=1;i<=n;i++) printf("%d\n",ans[i]);
	
	


	return 0;
}
/*

*/







 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值