一般信道容量迭代算法
有具体实验要求可以私聊定制
实验要求
- 输入:任意的一个信道转移概率矩阵。信源符号个数、新宿符号个数和每个具体的转移概率在运行时从键盘输入
- 输出:最佳信源分布 P ˉ ∗ \bar P^{*} Pˉ∗、信道容量 C C C
实验原理
迭代法
步骤
- 初始化信源分布: p i = 1 r p^{i}=\frac{1}{r} pi=r1,循环变量 k = 1 k=1 k=1,门限 Δ \Delta Δ, C ( 0 ) = − ∞ C^{(0)}=-\infty C(0)=−∞
- ϕ i j ( k ) = p i ( k ) p j i ∑ i r p i ( k ) p j i \phi^{(k)}_{ij}=\frac{p^{(k)}_{i}p_{ji}}{\sum_{i}^{r}p^{(k)}_{i}p_{ji}} ϕij(k)=∑irpi(k)pjipi(k)pji
- p i k + 1 = e x p [ ∑ j = 1 s p j i l o g ϕ i j ( k ) ] ∑ i = 1 r e x p [ ∑ j = 1 s p j i l o g ϕ i j ( k ) ] p_{i}^{k+1}=\frac{exp[\sum_{j=1}^{s}p_{ji}log\phi _{ij}^{(k)}]}{\sum_{i=1}^{r}exp[\sum_{j=1}^{s}p_{ji}log\phi_{ij}^{(k)}]} pik+1=∑i=1rexp[∑j=1spjilogϕij(k)]exp[∑j=1spjilogϕij(k)]
- C ( k + 1 ) = l o g [ ∑ i = 1 r e x p ( ∑ j = 1 s p j i l o g ϕ i j ( k ) ) ] C^{(k+1)}=log[\sum_{i=1}^{r}exp(\sum_{j=1}^{s}p_{ji}log\phi_{ij}^{(k)})] C(k+1)=log[i=1∑rexp(j=1∑spjilogϕij(k))]
- 若 C k + 1 = l o g ∣ C ( k + 1 ) − C ( k ) ∣ C ( k + 1 ) > Δ C^{k+1}=log\frac{|C^{(k+1)}-C^{(k)}|}{C^{(k+1)}}>\Delta Ck+1=logC(k+1)∣C(k+1)−C(k)∣>Δ,则 k = k + 1 k=k+1 k=k+1,转到第二步
代码
clc ;
clear all;
% [1/2,1/3,1/6;1/6,1/2,1/3;1/3,1/6,1/2]
% [1/2,1/4,0,1/4;0,1,0,0;0,0,1,0;1/4,0,1/4,1/2]
% [0.5,0.3,0.2;0.3,0.5,0.2]
Pij = input('请输入信道转移矩阵P\n')
[r,s] = size(Pij) ; % r为信源符号数 s为信宿符号数
Pi = zeros(1,r) ; % 零阵初始化
disp('原始信源分布:');
for m = 1:r
Pi(1, m) = 1/r ; % 初始化信源分布
end
disp(Pi)
error = 1e-10; % 误差
C(1) = -inf; % 负无穷
for k = 2:10000
% 计算fai
for n = 1:s
Pi_trans(:,n) = Pi'; % 因需要构造fai(ji),所以要构造Pij的转置
end
PiPji = Pij.*Pi_trans;
sum_PiPji = sum(PiPji,1);
for p = 1:r
sum_PiPji_extend(p,:) = sum_PiPji % 每列相同,构造矩阵逐项相除
end
fai=PiPji./(sum_PiPji_extend); % 逐项相除
% 计算新信源P(k+1)
Pi_exp = exp(sum(Pij.*log(fai+error),2));
Pi_sumsum = sum(Pi_exp,1);
Pi = Pi_exp/(Pi_sumsum)
Pi = Pi'
%计算信道容量
C(k) = log(Pi_sumsum)/log(2);
if abs((C(k)-C(k-1)))/C(k) < error % 小于误差截止,大于误差进入下一轮循环
break;
end
end
disp('迭代次数:k='),disp(k-1)
disp('最大信道容量时的信源分布:p='),disp(Pi)
disp('最大信道容量:C='),disp(C(k))
结果