电磁波极化原理及仿真

电磁波极化原理及仿真

有具体实验需求可私聊定制

实验目的

  1. 研究几种极化波的产生及其特点;
  2. 利用仿真软件直观地展示各种极化波形;

实验原理

电磁波的极化方式有三种:线极化、圆极化、椭圆极化。极化波都可看成由两个同频率的直线极化波在空间合成,两线极化波沿正Z方向传播,一个的极化取向在X 方向,另一个的极化取向在Y 方向。若X 在水平方向,Y 在垂直方向,这两个波就分别为水平极化波和垂直极化波。沿Z方向传播的均匀平面波的 E x E_{x} Ex分量和 E y E_{y} Ey分量都存在,可表示为
E x = E x m c o s ( ω t − k z + ϕ x ) , E y = E y m c o s ( ω t − k z + ϕ y ) E_{x}=E_{xm}cos(\omega t-kz+\phi x), E_{y}=E_{ym}cos(\omega t-kz+\phi_y) Ex=Exmcos(ωtkz+ϕx),Ey=Eymcos(ωtkz+ϕy)

合成波电场为 E ⃗ = e x ⃗ E x + e y ⃗ E y \vec{E}=\vec{e_{x}}E_x+\vec{e_y}E_y E =ex Ex+ey Ey,因此在空间任意给定点上,合成波电场强度矢量的大小和方向都可能随时间变化,这种现象称为电磁波的极化。电磁波的极化表征在空间给定点上电场强度矢量的方向随时间变化的特性,并用电场强度矢量的端点随时间变化的轨迹来述。若该轨迹是直线,则称为直线极化,若轨迹是圆,则称为圆极化。若轨迹是椭圆,则称为椭圆极化。

直线极化波

若电场的 E x E_x Ex分量和 E y E_y Ey分量的相位相同或相差 π \pi π,即 ϕ y − ϕ x = 0 \phi_y-\phi_x=0 ϕyϕx=0 ± π \pm \pi ±π 时,则合成波为直线极化波。当 ϕ y − ϕ x = 0 \phi_y-\phi_x=0 ϕyϕx=0时,可得到合成波电场强度的大小为
E = E x 2 + E y 2 = E x m 2 + E y m 2 c o s ( ω t + ϕ x ) E=\sqrt{E_x^2+E_y^2}=\sqrt{E_{xm}^2+E_{ym}^2}cos(\omega t+\phi_x) E=Ex2+Ey2 =Exm2+Eym2 cos(ωt+ϕx)

合成波电场 E ⃗ \vec{E} E E x ⃗ \vec{E_x} Ex 分量之间的夹角为
α = a r c t a n ( E y E x ) = ± a r c t a n ( E y m E x m ) \alpha=arctan(\frac{E_y}{E_x})=\pm arctan(\frac{E_{ym}}{E_{xm}}) α=arctan(ExEy)=±arctan(ExmEym)

圆极化波

若电场的 E x E_x Ex分量和 E y E_y Ey分量的振幅相等,但相位差为 2 π \frac2{\pi} π2 E x m = E y m = E m E_{xm}=E_{ym}=E_m Exm=Eym=Em ϕ y − ϕ x = ± π 2 \phi_y-\phi_x=\pm \frac \pi 2 ϕyϕx=±2π则合成波为圆极化波。当
ϕ y − ϕ x = π 2 \phi_y-\phi_x=\frac \pi 2 ϕyϕx=2π,即 ϕ y = ϕ 2 + ϕ x \phi_y=\frac \phi 2+\phi_x ϕy=2ϕ+ϕx,因此有
{ E x = E m c o s ( ω t + ϕ x ) E y = E m c o s ( ω t + ϕ x + π 2 = − E m s i n ( ω t + ϕ x ) \begin{cases}E_x=E_mcos(\omega t+\phi_x)\\E_y=E_mcos(\omega t+\phi_x+\frac \pi 2=-E_msin(\omega t+\phi_x)\end{cases} {Ex=Emcos(ωt+ϕx)Ey=Emcos(ωt+ϕx+2π=Emsin(ωt+ϕx)
故合成波电场强度的大小
E = E x 2 + E y 2 = E m E=\sqrt{E_x^2+E_y^2}=E_m E=Ex2+Ey2 =Em
合成波电场 E ⃗ \vec E E E x E_x Ex分量之间夹角为
θ = a r c t a n ( E y E x ) = − ( ω t + ϕ x ) \theta=arctan(\frac{E_y}{E_x})=-(\omega t+\phi x) θ=arctan(ExEy)=(ωt+ϕx)
上式为左旋圆极化波,若合成波电场 E ⃗ \vec E E E x E_x Ex分量之间夹角为
θ = a r c t a n ( E y E x ) = ω t + ϕ x \theta=arctan(\frac{E_y}{E_x})=\omega t+\phi x θ=arctan(ExEy)=ωt+ϕx
则上式为右旋缘极化波。

椭圆极化波

ϕ y − ϕ x \phi_y-\phi_x ϕyϕx不等于 0 0 0 ± π \pm \pi ±π、和 ± π 2 \pm \frac{\pi}2 ±2π,或者 ϕ y − ϕ x = ± π 2 \phi_y-\phi_x=\pm \frac{\pi}2 ϕyϕx=±2π,但 E x m ≠ E y m E_xm \neq E_{ym} Exm=Eym,此时为椭圆极化波。

仿真

实线表示电场,虚线表示磁场,分别画出包络图和矢量图

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码

clear all; close all; clc

f_0 = 1e9
varepsilon_0 = 1/(36*pi)*1e-9
mu_0 = 4*pi*1e-7
eta_0 = sqrt(mu_0/varepsilon_0)
omega = 2*pi*f_0
lambda = 1/(f_0*sqrt(mu_0*varepsilon_0))
v_p = 1/sqrt(varepsilon_0*mu_0)
k = omega*sqrt(varepsilon_0*mu_0)

E_xm_l = sqrt(3);
E_ym_l = 1;
E_xm_c = 1;
E_ym_c = 1;
N = 100;
s_0 = zeros(1, N);
t = 0;
z = linspace(0, 2*lambda, N);

% 线性极化
Ex_l = E_xm_l*cos(omega*t-k*z+pi/3)
Ey_l = E_ym_l*cos(omega*t-k*z+pi/3)
A_l = sqrt(E_xm_l^2+E_ym_l^2)
E_l = A_l*cos(omega*t+0)
H_l = -E_l./eta_0
figure;
quiver3(z, s_0, s_0, s_0, Ex_l, Ey_l); hold on;
quiver3(z, s_0, s_0, s_0, -Ey_l, Ex_l, '--'); hold on;
title('线性极化'); hold off;
figure;
plot3(z, Ex_l, Ey_l); hold on;
plot3(z, -Ey_l, Ex_l, '--'); hold on;
title('线性极化'); hold off;


% 左旋圆极化波
l=zeros(size(z)); 
Ey_cl=cos(omega*t-k*z);        
Ex_cl=cos(omega*t-k*z+pi/2);    	
figure;
quiver3(s_0, s_0, z, Ex_cl, Ey_cl, s_0); hold on;
quiver3(s_0, s_0, z, -Ey_cl, Ex_cl, s_0, '--'); hold on;
title('左旋圆极化波'); hold off;
figure;
plot3(Ex_cl, Ey_cl, z); hold on;
plot3(-Ey_cl, Ex_cl, z, '--'); hold on;
title('左旋圆极化波'); hold off;

% 右旋圆极化波
Ey_cr=cos(omega*t-k*z+pi/2);        
Ex_cr=cos(omega*t-k*z);    	
figure;
quiver3(s_0, s_0, z, Ex_cr, Ey_cr, s_0); hold on;
quiver3(s_0, s_0, z, -Ey_cr, Ex_cr, s_0, '--'); hold on;
title('右旋圆极化波'); hold off;
figure;
plot3(Ex_cr, Ey_cr, z); hold on;
plot3(-Ey_cr, Ex_cr, z, '--'); hold on;
title('右旋圆极化波'); hold off;

% 合成左旋圆极化波
fai = pi;
t1 = 0.25/f_0;
t2 = t1-0.25/f_0;
E_lx = A_l*cos(omega*t1-k*z+fai);
E_ly = A_l*cos(omega*t2-k*z+fai);
figure
quiver3(s_0, s_0, z, E_lx, E_ly, s_0); hold on;
quiver3(s_0, s_0, z, -E_ly, E_lx, s_0, '--'); hold on;
title('由时延合成左旋圆极化波'); hold off;
figure;
plot3(E_lx, E_ly, z); hold on;
plot3(-E_ly, E_lx, z, '--'); hold on;
title('由时延合成左旋圆极化波'); hold off;

% 合成右旋圆极化波
fai = pi;
t1 = 0;
t2 = t1+0.25/f_0;
E_lx = A_l*cos(omega*t1-k*z+fai);
E_ly = A_l*cos(omega*t2-k*z+fai);
figure
quiver3(s_0, s_0, z, E_lx, E_ly, s_0); hold on;
quiver3(s_0, s_0, z, -E_ly, E_lx, s_0, '--'); hold on;
title('由时延合成右旋圆极化波'); hold off;
figure;
plot3(E_lx, E_ly, z); hold on;
plot3(-E_ly, E_lx, z, '--'); hold on;
title('由时延合成右旋圆极化波'); hold off;
  • 2
    点赞
  • 53
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不想取名字的飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值