从线性代数理解余弦定理,三角不等式,A-G不等式和柯西-许瓦兹不等式
向量的两种运算
scalar multiplication and addition,分别为数乘和加法。两种运算一起有个好听的名字叫linear combination,也就是线性组合。线性组合是线代的基石之一。比如v和w的线性组合表示为,其中a,b为常数
a v → + b w → \begin{aligned} a\overrightarrow v + b\overrightarrow w \end{aligned} av+bw
向量的三种表示方法
-
[]的形式,如下面这种
[ 1 2 3 ] \begin{aligned}\left[ \begin{array}{l} 1\\ 2\\ 3 \end{array} \right]\end{aligned} ⎣⎡123⎦⎤
-
arrow from 0 → \begin{aligned}\overrightarrow {\rm{0}} \end{aligned} 0
-
point in the vector space ,如下图:
向量的内积与向量的长度
内积:两个向量的内积定义为: v T w {v^T}w vTw
如 v = [ 1 2 3 ] \begin{aligned} v = \left[ \begin{array}{l} 1\\ 2\\ 3 \end{array} \right] \end{aligned} v=⎣⎡123⎦⎤, w = [ 4 5 6 ] \begin{aligned}w = \left[ \begin{array}{l} 4\\ 5\\ 6 \end{array} \right]\end{aligned} w=⎣⎡456⎦⎤, v T w = 1 × 4 + 2 × 5 + 3 × 6 = 32 \begin{aligned}{v^{\rm{T}}}w = 1 \times 4 + 2 \times {\rm{5 + 3}} \times {\rm{6 = 32}}\end{aligned} vT