从线性代数理解余弦定理,三角不等式,A-G不等式和柯西-许瓦兹不等式

从线性代数理解余弦定理,三角不等式,A-G不等式和柯西-许瓦兹不等式

向量的两种运算

scalar multiplication and addition,分别为数乘和加法。两种运算一起有个好听的名字叫linear combination,也就是线性组合。线性组合是线代的基石之一。比如v和w的线性组合表示为,其中a,b为常数
a v → + b w → \begin{aligned} a\overrightarrow v + b\overrightarrow w \end{aligned} av +bw

向量的三种表示方法

  1. []的形式,如下面这种

    [ 1 2 3 ] \begin{aligned}\left[ \begin{array}{l} 1\\ 2\\ 3 \end{array} \right]\end{aligned} 123

  2. arrow from 0 → \begin{aligned}\overrightarrow {\rm{0}} \end{aligned} 0

  3. point in the vector space ,如下图:
    在这里插入图片描述

向量的内积与向量的长度

内积:两个向量的内积定义为: v T w {v^T}w vTw

v = [ 1 2 3 ] \begin{aligned} v = \left[ \begin{array}{l} 1\\ 2\\ 3 \end{array} \right] \end{aligned} v=123 w = [ 4 5 6 ] \begin{aligned}w = \left[ \begin{array}{l} 4\\ 5\\ 6 \end{array} \right]\end{aligned} w=456 v T w = 1 × 4 + 2 × 5 + 3 × 6 = 32 \begin{aligned}{v^{\rm{T}}}w = 1 \times 4 + 2 \times {\rm{5 + 3}} \times {\rm{6 = 32}}\end{aligned} vTw=1×4+2×5+3×6=32

向量的长度为 ∣ ∣ v ∣ ∣ ||v|| v,且有 ∣ ∣ v ∣ ∣ 2 = v T v \begin{aligned} ||v|{|^2} = {v^T}v \end{aligned} v2=vTv,以上面为例, ∣ ∣ v ∣ ∣ 2 = 1 2 + 2 2 + 3 3 = 14 \begin{aligned}||v|{|^2} = {1^2} + {2^2} + {3^3} = 14\end{aligned} v2=12+22+33=14,其长度为 14 \begin{aligned}\sqrt {14} \end{aligned} 14

单位向量:unit vector, u = v ∣ ∣ v ∣ ∣ \begin{aligned}u{\rm{ = }}\frac{v}{{||v||}}\end{aligned} u=vv,与v同方向的单位向量为 u = 1 14 [ 1 2 3 ] \begin{aligned}u = \frac{1}{{\sqrt {14} }}\left[ \begin{array}{l} 1\\ 2\\ 3 \end{array} \right]\end{aligned} u=14 1123

向量的夹角: u T U = cos ⁡ θ \begin{aligned}{u^T}U = \cos \theta \end{aligned} uTU=cosθ,U也为单位向量。 cos ⁡ θ = v T w ∣ ∣ v ∣ ∣ ∣ ∣ w ∣ ∣ \begin{aligned}\cos \theta = \frac{{{v^{\rm{T}}}w}}{{||v||||w||}}\end{aligned} cosθ=vwvTw

柯西-许瓦兹不等式

根据向量的夹角公式,由于 − 1 ≤ cos ⁡ θ ≤ 1 \begin{aligned} - 1 \le \cos \theta \le 1 \end{aligned} 1cosθ1,推出许瓦兹不等式如下:
∣ v T w ∣ ≤ ∣ ∣ v ∣ ∣ . ∣ ∣ w ∣ ∣ \begin{aligned} |{v^T}w| \le ||v||.||w||\end{aligned} vTwv.w
其代数表达形式为,下面的v和w为n维向量
( ∑ i = 1 n v i w i ) 2 ≤ ∑ i = 1 n v i 2 ∑ i = 1 n w i 2 \begin{aligned} {\left( {\sum\limits_{i = 1}^n {{v_i}{w_i}} } \right)^2} \le \sum\limits_{i = 1}^n {{v_i}^2} \sum\limits_{i = 1}^n {{w_i}^2} \end{aligned} (i=1nviwi)2i=1nvi2i=1nwi2

A-G不等式(arithmetic-geometry inequality)

二维:令 v = [ a b ] , w = [ b a ] \begin{aligned}v{\rm{ = }}\left[ \begin{array}{l} a\\ b \end{array} \right],w = \left[ \begin{array}{l} b\\ a \end{array} \right]\end{aligned} v=[ab],w=[ba],根据许瓦兹不等式可得
2 a b ≤ a 2 + b 2 a b ≤ a + b 2 \begin{aligned} \begin{array}{l} 2ab \le {a^2} + {b^2}\\\displaystyle \sqrt {ab} \le \frac{{a + b}}{2} \end{array}\end{aligned} 2aba2+b2ab 2a+b
n维的待证

三角不等式(triangle inequality)

∣ ∣ a + b ∣ ∣ ≤ ∣ ∣ a ∣ ∣ + ∣ ∣ b ∣ ∣ \begin{aligned}||a + b|| \le ||a|| + ||b||\end{aligned} a+ba+b

证明如下
∣ ∣ a + b ∣ ∣ 2 = ∣ ∣ a ∣ ∣ 2 + 2 a T b + ∣ ∣ b ∣ ∣ 2 \begin{aligned}||a + b|{|^2} = ||a|{|^2} + 2{a^T}b + ||b|{|^2}\end{aligned} a+b2=a2+2aTb+b2
根据许瓦兹不等式易知 ∣ ∣ a ∣ ∣ 2 + 2 a T b + ∣ ∣ b ∣ ∣ 2 ≤ ( ∣ ∣ a ∣ ∣ + ∣ ∣ b ∣ ∣ ) 2 \begin{aligned}||a|{|^2} + 2{a^T}b + ||b|{|^2} \le {\left( {||a|| + ||b||} \right)^2}\end{aligned} a2+2aTb+b2(a+b)2,所以 ∣ ∣ a + b ∣ ∣ 2 ≤ ( ∣ ∣ a ∣ ∣ + ∣ ∣ b ∣ ∣ ) 2 \begin{aligned}||a + b|{|^2} \le {\left( {||a|| + ||b||} \right)^2}\end{aligned} a+b2(a+b)2,得证。如果a,b为标量同样也成立
在这里插入图片描述

余弦定理

∣ ∣ v − w ∣ ∣ 2 = ∣ ∣ v ∣ ∣ 2 − 2 v T w + ∣ ∣ w ∣ ∣ 2 = ∣ ∣ v ∣ ∣ 2 − 2 ∣ ∣ v ∣ ∣ . ∣ ∣ w ∣ ∣ cos ⁡ θ + ∣ ∣ w ∣ ∣ 2 \begin{aligned} ||v - w|{|^2} = &||v|{|^2} - 2{v^T}w + ||w|{|^2}\\\displaystyle =& ||v|{|^2} - 2||v||.||w||\cos \theta + ||w|{|^2} \end{aligned} vw2==v22vTw+w2v22v.wcosθ+w2

平行四边形对角线与边长的关系

从图中可以看到
∣ ∣ v − w ∣ ∣ 2 + ∣ ∣ v + w ∣ ∣ 2 = 2 ∣ ∣ v ∣ ∣ 2 + 2 ∣ ∣ w ∣ ∣ 2 \begin{aligned} ||v - w|{|^2} + ||v + w|{|^2} = 2||v|{|^2} + 2||w|{|^2}\end{aligned} vw2+v+w2=2v2+2w2
从向量的角度很直观地知道了平行四边形对角线与边长的关系。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值