数学笔记(四)线性代数知识点总结

写在最前面:本文是阅读《Quantum Computation and Quantum Information》时所做,作者之前略微学过线性代数,但了解不深,阅读第二章第一节线性代数部分时遇到了很多困难,今将学习笔记发布给大家参阅,若有疏漏欢迎理性讨论,希望能给大家带来一点启发。

[2.1.2] (这是书上的相关内容的对应章节)

1.线性算子与矩阵表示的转换:

1.1 一般情况

线性算子本身与坐标系无关,但要将其矩阵联系起来,需要建立坐标系,而建立坐标系首先要确定基。

给定输入基 ∣ v i ⟩ |v_i\rangle vi和输出基 ∣ w i ⟩ |w_i\rangle wi,则有以下确定线性变换的矩阵表示的两种方法:

(1).直接变换法:

设线性算子 A A A有映射关系 A ∣ v j ⟩ = ∣ w ⟩ = ∑ i A i j ∣ w i ⟩ A|v_j\rangle=|w\rangle=\displaystyle\sum_iA_{ij}|w_i\rangle Avj=w=iAijwi,则用于线性表示 ∣ w ⟩ |w\rangle w的系数 A i j A_{ij} Aij即为表示线性算子的矩阵的第 i i i行第 j j j列。

(2).外积计算法:

在(1)的基础下,如果 ∣ w i ⟩ |w_i \rangle wi​和 ∣ v i ⟩ |v_i\rangle vi​是两组标准正交基时,

由完备性关系: A = I W A I V = ∑ i j ∣ w i ⟩ ⟨ w i ∣ A ∣ v j ⟩ ⟨ v i ∣ = ∑ i ⟨ w i ∣ A ∣ v j ⟩ ∣ w i ⟩   ⟨ v i ∣ A = I_WAI_V=\displaystyle \sum_{ij} |w_i\rangle\langle w_i|A|v_j\rangle\langle v_i| = \displaystyle \sum_i \langle w_i|A|v_j\rangle |w_i\rangle\ \langle v_i| A=IWAIV=ijwiwiAvjvi=iwiAvjwi vi

可以证明,$A_{ji} = \langle w_i|A|v_j\rangle , , ,A_{ji} 表 示 表示 A 的 ​ 矩 阵 的 第 的​矩阵的第 j 行 第 行第 i$列的元素。

1.2 过渡矩阵

1.1的情况下,若线性算子 A A A是这么一个矩阵: A ∣ v i ⟩ = ∣ w i ⟩ A|v_i\rangle = |w_i\rangle Avi=wi,即 A A A将一组基一一映射到另一组基,称 A A A​​的矩阵表示为过渡矩阵.

可以证明,当 ∣ w i ⟩ |w_i \rangle wi和$|v_i\rangle $是两组标准正交基时,过渡矩阵可以这样得到:

A = ∑ i ∣ w i ⟩ ⟨ v i ∣ A = \displaystyle \sum_i|w_i\rangle\langle v_i| A=iwivi

1.3恒等算子

恒等算子 I I I定义为 I ∣ v ⟩ ≡ ∣ v ⟩ I|v\rangle \equiv |v\rangle Ivv.在输入基和输出基相同的情况下, I I I的矩阵表示可以为 E E E(即单位矩阵,除对角线全为1外其余均为0).

1.4二维复向量空间上的重要的外积:

∣ 0 ⟩ ⟨ 0 ∣ = [ 1 0 0 0 ] |0\rangle\langle0| = \left[ \begin{matrix}1&0\\0&0\end{matrix}\right ] 00=[1000]

∣ 0 ⟩ ⟨ 1 ∣ = [ 0 1 0 0 ] |0\rangle\langle1| = \left[ \begin{matrix}0&1\\0&0\end{matrix}\right ] 01=[0010]​​

∣ 1 ⟩ ⟨ 0 ∣ = [ 0 0 1 0 ] |1\rangle\langle0| = \left[ \begin{matrix}0&0\\1&0\end{matrix}\right ] 10=[0100]

∣ 1 ⟩ ⟨ 1 ∣ = [ 0 0 0 1 ] |1\rangle\langle1| = \left[ \begin{matrix}0&0\\0&1\end{matrix}\right ] 11=[0001]

[2.1.4]

2.内积

Hilbert空间定义内积应满足三个条件:

(1).线性性质: ( ∣ v ⟩ , ∑ i λ i ∣ w i ⟩ ) = ∑ i λ i ( ∣ v ⟩ , ∣ w i ⟩ ) . (|v\rangle,\displaystyle \sum_{i}\lambda_i|w_i\rangle) =\displaystyle \sum_{i}\lambda_i(|v\rangle,|w_i\rangle). (v,iλiwi)=iλi(v,wi).

(2).交换共轭: ( ∣ v ⟩ , ∣ w ⟩ ) = ( ∣ w ⟩ , ∣ v ⟩ ) ∗ . (|v\rangle,|w\rangle) = (|w\rangle,|v\rangle)^{*}. (v,w)=(w,v).

(3).非负性: ( ∣ v ⟩ , ∣ v ⟩ ) ≥ 0. (|v\rangle,|v\rangle)\geq0. (v,v)0.

3.Gram-Schmidt 正交化递推公式

(1). ∣ v 1 ⟩ = ∣ w 1 ⟩ |v_1\rangle = |w_1\rangle v1=w1

(2). ∣ v k + 1 ⟩ = ∣ w k + 1 ⟩ − ∑ i = 1 k ⟨ v i ∣ w k + 1 ⟩ ∣ v i ⟩ ∣ ∣   ∣ w k + 1 ⟩ − ∑ i = 1 k ⟨ v i ∣ w k + 1 ⟩ ∣ v i ⟩ ∣ ∣ |v_{k+1}\rangle = \frac{|w_{k+1}\rangle - \displaystyle \sum_{i=1}^{k}\langle v_i|w_{k+1}\rangle|v_i\rangle}{||\ |w_{k+1}\rangle - \displaystyle \sum_{i=1}^{k}\langle v_i|w_{k+1}\rangle|v_i\rangle||} vk+1= wk+1i=1kviwk+1viwk+1i=1kviwk+1vi​,(注意后面只有 k k k项.)

[2.1.5]

4.特征值与特征向量

4.1定义

一个特征值可以对应无数个特征向量,这些特征向量组成了特征值 λ \lambda λ​​的本征空间。

4.2特征值的性质:

对于任意矩阵 A A A,有 A n ∣ v ⟩ = λ n ∣ v ⟩ . A^n|v\rangle = \lambda^n|v\rangle. Anv=λnv.其中 ∣ v ⟩ |v\rangle v是特征值 λ \lambda λ所对应的特征向量.

4.3Pauli矩阵的特征值

除了 I I I的特征值为1外,其余都是 ± 1 \pm1 ±1

关于各种特殊矩阵的特征值与特征向量将在后续文章中给出。

5.对角表示:

已知矩阵 A A A​的特征值是 λ i \lambda_i λi​, λ i \lambda_i λi​对应的特征向量分别为 ∣ v i ⟩ |v_i\rangle vi​(重根要列出 λ i \lambda_i λi的本征空间的一组最大线性无关组),将 ∣ v i ⟩ |v_i\rangle vi​标准正交化,得到向量 ∣ i ⟩ |i\rangle i​​​.

如果矩阵 A A A​可以表示为 ∑ i λ i ∣ i ⟩ ⟨ i ∣ \displaystyle \sum_i\lambda_i|i\rangle\langle i| iλiii​​的形式,则称 A A A​可对角化。

可以证明, 此时向量 ∣ i ⟩ |i\rangle i​仍是 A A A​的特征向量.

可以证明, A A A​可以对角化的充要条件是 A A A​​是正规(normal)的。

[2.1.6]

6.伴随算子

A A A的伴随算子的矩阵表示是 A A A的矩阵表示的自共轭矩阵.记为 A † A^{\dagger} A​.且伴随算子有关系:[定义式]

( ∣ v ⟩ , A ∣ w ⟩ ) = ( A † ∣ v ⟩ , ∣ w ⟩ ) . (|v\rangle,A|w\rangle) = (A^{\dagger}|v\rangle,|w\rangle). (v,Aw)=(Av,w).

伴随矩阵性质:

( 1 ) (1) (1). ( A † ) † = A (A^{\dagger})^{\dagger} = A (A)=A

( 2 ) (2) (2). ( ⟨ v ∣ w ⟩ ) † = ( ⟨ v ∣ w ⟩ ) ∗ (\langle v|w\rangle)^{\dagger} = (\langle v|w\rangle)^{*} (vw)=(vw)

( 3 ) (3) (3)​​. ( ∣ v ⟩ ⟨ w ∣ ) † = ( ∣ w ⟩ ⟨ v ∣ ) (|v\rangle\langle w|)^{\dagger} =(|w\rangle\langle v|) (vw)=(wv)

( 4 ) (4) (4). ( A 1 A 2 . . . A n ) † = A n † A n − 1 † . . . A 1 † (A_1A_2...A_n)^{\dagger} = A_n^{\dagger}A_{n-1}^{\dagger}...A_1^{\dagger} (A1A2...An)=AnAn1...A1

( 5 ) (5) (5)​. [ A B C D ] † = \left[\begin{matrix}A&B\\C&D\end{matrix}\right]^{\dagger} = [ACBD]= [ A † C † B † D † ] \left[\begin{matrix}{A^{\dagger}}& {C^{\dagger}}\\ {B^{\dagger}}& {D^{\dagger}}\end{matrix}\right] [ABCD]​(分块矩阵)

8.正规矩阵和Hermite​矩阵

对于线性算子 A A A​​,如果 A A † = A † A AA^{\dagger} =A^{\dagger}A AA=AA​​,则称 A A A​​​是正规算子,其矩阵表示称为正规矩阵.

正规矩阵性质:一个矩阵是正规矩阵当且仅当它可以对角表示。

对于线性算子 A A A​,如果 A † = A A^{\dagger} =A A=A​,则称 A A A​是Hermite算子,其矩阵表示称为Hermite矩阵.

正规矩阵与Hermite矩阵的关系:一个正规矩阵是Hermite的,当且仅当它的特征值全是实数。

Hermite矩阵性质:

( 1 ) . (1). (1).​​​​ Hermite的特征值都是实数.

( 2 ) . (2). (2).​​​Hermite矩阵的具有不同特征值的特征向量必须正交.[证明考虑 ⟨ v ∣ A ∣ w ⟩ \langle v|A|w\rangle vAw​及其伴随矩阵]

( 3 ) . (3). (3).对于任意一个矩阵 A A A都可以分解为 A = B + i C A = B+iC A=B+iC,其中 B = 1 2 ( A + A † ) , C = 1 2 i ( A − A † ) B = \frac{1}{2}(A+A^{\dagger}),C = \frac{1}{2i}(A-A^{\dagger}) B=21(A+A),C=2i1(AA),且 B , C B,C B,C都是Hermite矩阵。

9.酉算子

对于线性算子 U U U​​​​,如果 U U † = U † U = I UU^{\dagger} =U^{\dagger}U = I UU=UU=I​​​​,则称 U U U​​​​是酉算子,其矩阵表示称为酉矩阵.

酉矩阵的性质:

( 1 ) . (1). (1).酉矩阵是正规矩阵。

( 2 ) . ( ∣ v ⟩ , ⟨ w ∣ ) = ( U ∣ v ⟩ , U ⟨ w ∣ ) (2).(|v\rangle,\langle w|) = (U|v\rangle,U\langle w|) (2).(v,w)=(Uv,Uw)

( 3 ) (3) (3).酉矩阵的特征值模都是1.

( 4 ) . (4). (4).​酉矩阵都是过渡矩阵,即存在两组标准正交基 ∣ w i ⟩ |w_i \rangle wi​和$|v_i\rangle ​ , 使 得 ​,使得 使U = \displaystyle \sum_i|w_i\rangle\langle v_i|$​​.[可利用酉矩阵的性质2证明]

( 5 ) . (5). (5).​酉矩阵的乘积也是酉矩阵。[通过性质4很好证明]

10.投影算子:

10.1定义

设线性空间 V V V的一组标准正交基为 ∣ 1 ⟩ , ∣ 2 ⟩ . . . ∣ d ⟩ |1\rangle,|2\rangle...|d\rangle 1,2...d,从中选取 k ( k ≤ d ) k(k\leq d) k(kd)个向量,定义具有形如 P ≡ ∑ i = 1 k ∣ i ⟩ ⟨ i ∣ P\equiv \displaystyle \sum_{i=1}^{k}|i\rangle\langle i| Pi=1kii的矩阵称为投影矩阵.

其对应的线性算子称为投影(projection)算子。

10.2投影算子的意义

10.1的情况下,设线性空间 V V V​的算子有元素 ∣ v ⟩ |v\rangle v​,显然 P ∣ v ⟩ P|v\rangle Pv​即将元素 ∣ v ⟩ |v\rangle v​投影到向量 ∣ 1 ⟩ , ∣ 2 ⟩ . . . ∣ k ⟩ |1\rangle,|2\rangle...|k\rangle 1,2...k​所张成的子空间。定义 Q = I − P Q=I-P Q=IP​,显然 Q Q Q​也是投影算子,且作用为将向量 ∣ v ⟩ |v\rangle v​投影到向量 ∣ k + 1 ⟩ , ∣ k + 2 ⟩ . . ∣ d ⟩ |k+1\rangle,|k+2\rangle..|d\rangle k+1,k+2..d​所张成的空间。称 Q Q Q P P P正交补

根据此,设 M M M​是 V V V​到 V V V​的正规算子,有 Q M P = Q M † P = 0 QMP =QM^{\dagger}P= 0 QMP=QMP=0​​.

10.3****投影算子的性质:

( 1 ) . (1). (1).​投影算子都是Hermite矩阵.

( 2 ) . (2). (2).​投影算子的特征值都是非0即1.

( 3 ) . (3). (3).​​投影算子是幂等矩阵。

( 4 ) (4) (4)​​.正规算子 M M M​​是投影算子的充要条件为 M 2 = M M^2=M M2=M​​​.

11.半正定算子

11.1 定义

对于任意向量 ∣ v ⟩ |v\rangle v,如果有 ⟨ v ∣ A ∣ v ⟩ ≥ 0 \langle v|A|v\rangle \geq0 vAv0,则称A为半正定(positive)算子.

对于任意向量 ∣ v ⟩ |v\rangle v​,如果有 ⟨ v ∣ A ∣ v ⟩ > 0 \langle v|A|v\rangle >0 vAv>0​​,则称A为正定(positive definite)算子.

本文主要研究半正定算子。

11.2性质

( 1 ) . (1). (1).特征值非负。

( 2 ) . (2). (2). P 2 = P \sqrt{P^2} =P P2 =P​[证明参见13算子函数的定义]

( 3 ) . (3). (3).​必定是Hermite算子。[证明参见Hermite的性质3]

( 4 ) (4) (4).对于任意线性算子 A A A, A † A A^{\dagger}A AA A A † AA^{\dagger} AA​是半正定的.[考虑整体 A ∣ v ⟩ A|v\rangle Av]

[2.1.7]

12.张量积

12.1张量积的计算公式:

A ⊗ B = [ A 11 B A 12 B . . . A 1 n B A 21 B A 22 B . . . A 2 n B ⋮ ⋮ ⋮ ⋮ A m 1 B A m 2 B . . . A m n B ] A\otimes B = \left[\begin{matrix}A_{11}B&A_{12}B&...&A_{1n}B\\A_{21}B&A_{22}B&...&A_{2n}B\\\vdots &\vdots&\vdots&\vdots\\A_{m1}B&A_{m2}B&...&A_{mn}B\end{matrix}\right] AB=A11BA21BAm1BA12BA22BAm2B.........A1nBA2nBAmnB

A A A m × n m\times n m×n矩阵, B B B p × q p\times q p×q矩阵,则 A ⊗ B A\otimes B AB m p × n q mp\times nq mp×nq矩阵.

12.2张量积的意义:

设线性空间 V V V ∣ v ⟩ |v\rangle v​的集合, W W W ∣ w ⟩ |w\rangle w的集合,则定义 V ⊗ W V\otimes W VW ∣ v ⟩ ⊗ ∣ w ⟩ |v\rangle \otimes|w\rangle vw及其线性组合的集合。

可以证明,集合 V ⊗ W = { ∣ v i ⟩ ⊗ ∣ w j ⟩ ∣   ∣ v ⟩ ∈ V , ∣ w ⟩ ∈ W } V\otimes W=\{|v_i\rangle\otimes|w_j\rangle |\ |v\rangle\in V,|w\rangle \in W\} VW={viwj vV,wW}

可以证明, 若 ∣ i ⟩ |i\rangle i V V V的基向量, ∣ j ⟩ |j\rangle j W W W的基向量,则 ∣ i ⟩ ⊗ ∣ j ⟩ |i\rangle\otimes|j\rangle ij V ⊗ W V\otimes W VW的基向量.

12.3张量积的性质

( 1 ) . (1). (1).张量积对于运算 ∗ ,   T ,   † ^*,\ ^T,\ ^{\dagger} , T, 都是可分配的.

( A ⊗ B ) ∗ = A ∗ ⊗ B ∗ , ( A ⊗ B ) T = A T ⊗ B T , ( A ⊗ B ) † = A † ⊗ B † . (A\otimes B)^* = A^*\otimes B^*,(A\otimes B)^T = A^T\otimes B^T,(A\otimes B)^{\dagger} = A^{\dagger}\otimes B^{\dagger}. (AB)=AB,(AB)T=ATBT,(AB)=AB.

( 2 ) . (2). (2).​线性性质: ( k A + u B ) ⊗ C = k ( A ⊗ C ) + u ( B ⊗ C ) (kA+uB) \otimes C = k(A\otimes C)+u(B\otimes C) (kA+uB)C=k(AC)+u(BC)​​.

( 3 ) . (3). (3).​乘法性质: ( A ⊗ B ) ( C ⊗ D ) = A C ⊗ B D (A\otimes B)(C\otimes D) = AC\otimes BD (AB)(CD)=ACBD

( 4 ) . (4). (4). A , B A,B A,B都是酉的,则 A ⊗ B A\otimes B AB也是酉的。这条性质可以推广到(半)正定算子,投影算子,Hermite算子,正规算子.
[2.1.8]
13.算子函数

f f f是一个复数域上的映射,在正规矩阵 A = ∑ i a ∣ i ⟩ ⟨ i ∣ A = \displaystyle \sum_{i}a|i\rangle\langle i| A=iaii上可定义算子函数 f ( A ) ≡ ∑ i f ( a ) ∣ i ⟩ ⟨ i ∣ . f(A) \equiv \displaystyle \sum_{i}f(a)|i\rangle\langle i|. f(A)if(a)ii.

14.矩阵的迹

14.1 定义

矩阵的迹是这样一个函数: t r ( A ) = ∑ i A i i tr(A) = \displaystyle \sum_{i}A_{ii} tr(A)=iAii​即矩阵的对角线元素之和。

容易证明,Pauli矩阵的迹都是0.

14.2性质

( 1 ) . (1). (1).线性性质: t r ( k A + u B ) = k t r ( A ) + u t r ( B ) tr(kA+uB) = ktr(A)+utr(B) tr(kA+uB)=ktr(A)+utr(B)

( 2 ) . (2). (2).循环性质: t r ( A B ) = t r ( B A ) tr(AB) = tr(BA) tr(AB)=tr(BA)[证明考虑矩阵展开]

( 3 ) . (3). (3).​设 ∣ v ⟩ |v\rangle v是单位向量,则 t r ( A ∣ v ⟩ ⟨ v ∣ ) = ⟨ v ∣ A ∣ v ⟩ . tr(A|v\rangle \langle v|) = \langle v|A|v\rangle. tr(Avv)=vAv.​[证明考虑迹的性质2]​​
[2.1.9]
15.对易式与反对易式

15.1 定义式

对易式 [ A , B ] = A B − B A [A,B] = AB-BA [A,B]=ABBA

反对易式 { A , B } = A B + B A \{A,B\} = AB+BA {A,B}=AB+BA

如果 [ A , B ] = 0 [A,B] = 0 [A,B]=0​​,称 A A A​与 B B B​是可对易的.

15.2性质

( 1 ) . (1). (1). A B = 1 2 ( [ A , B ] + { A , B } ) AB = \frac{1}{2}([A,B]+\{A,B\}) AB=21([A,B]+{A,B})

( 2 ) (2) (2)​. [ A , B ] = − [ B , A ] [A,B] = -[B,A] [A,B]=[B,A]

( 3 ) . (3). (3). [ A , B ] † = [ B † , A † ] [A,B]^{\dagger} = [B^{\dagger},A^{\dagger}] [A,B]=[B,A]

15.3 任意Pauli矩阵的乘积

定义三元函数 ε j k l \varepsilon_{jkl} εjkl:

j k l jkl jkl​中有相同的元素,返回 0 0 0.

j k l jkl jkl​​各不相同且 j k l jkl jkl​​的逆序数为偶数,返回 1 1 1​​.

j k l jkl jkl​​​各不相同且 j k l jkl jkl​​​的逆序为奇数,返回 − 1 -1 1​​​.

可以验证,对于pauli矩阵:

( 1 ) . (1). (1). { σ j , σ k } = 0 \{\sigma_j,\sigma_k\} = 0 {σj,σk}=0

( 2 ) . (2). (2). [ σ j , σ k ] = 2 i ∑ l = 0 3 ε j k l σ l [\sigma_j,\sigma_k] =2i\displaystyle \sum_{l=0}^{3}\varepsilon_{jkl}\sigma_l [σj,σk]=2il=03εjklσl

( 3 ) . (3). (3). σ i 2 = I \sigma_i^2 = I σi2=I

根据以上三个条件,可以得到

σ j σ k = δ j k I + i ∑ l = 0 3 ε j k l σ l . \sigma_j\sigma_k = \delta_{jk}I+\displaystyle i\sum_{l=0}^{3}\varepsilon_{jkl}\sigma_l. σjσk=δjkI+il=03εjklσl.
[2.1.10]
16.极式分解

分解步骤

对于任意矩阵 A A A​,定义矩阵 J = A † A J = \sqrt{A^{\dagger}A} J=AA

于是 J J J​​​是一个半正定算子,可以进行谱分解为 ∑ i λ i ∣ i ⟩ ⟨ i ∣ . \displaystyle \sum_{i}\lambda_i|i\rangle\langle i|. iλiii. λ i \lambda_i λi​是 J J J​的特征向量。

只考虑不为0的 λ i \lambda_i λi,

∣ e i ⟩ = 1 λ i A ∣ i ⟩ |e_i\rangle = \frac{1}{\lambda_i}A|i\rangle ei=λi1Ai

将向量组 ∣ e i ⟩ |e_i\rangle ei扩展为标准正交向量组,

记酉矩阵 U = ∑ i ∣ e i ⟩ ⟨ i ∣ U = \displaystyle \sum_{i}|e_i\rangle\langle i| U=ieii

于是 A ∣ i ⟩ = U J ∣ i ⟩ A|i\rangle = UJ|i\rangle Ai=UJi

A A A可以分解为 U J UJ UJ.

称为 A A A的左极式分解.

同理易求出 A A A​的右极式分解 A = K U , K = A A † A = KU,K = \sqrt{AA^{\dagger}} A=KU,K=AA

17.奇异值分解

17.1 相似对角化

对于正规矩阵 A A A,有谱分解 A = ∑ i λ i ∣ i ⟩ ⟨ i ∣ A = \displaystyle \sum_{i}\lambda_i|i\rangle\langle i| A=iλiii​,

构造矩阵 T T T​​,使 T T T的第 i i i列是列向量 ∣ i ⟩ |i\rangle i​.显然 T T † = I TT^{\dagger} = I TT=I

构造矩阵 D D D,使得 D i j = λ i δ i j . D_{ij} = \lambda_i\delta_{ij}. Dij=λiδij.

于是可以证明 T D T − 1 = T D T † = ∑ i λ i ∣ i ⟩ ⟨ i ∣ = A TDT^{-1} = TDT^{\dagger} = \displaystyle \sum_{i}\lambda_i|i\rangle\langle i| = A TDT1=TDT=iλiii=A

D D D A A A​​的相似标准型,这便是谱分解与相似对角化的关系。

17.2奇异值分解

先将矩阵 A A A​左极式分解,得 A = S J A = SJ A=SJ

J J J​可谱分解,所以 J J J可以相似对角化,设 J = T D T − 1 J = TDT^{-1} J=TDT1

U = S T , V = T − 1 U = ST,V = T^{-1} U=ST,V=T1​​ .显然 U , V U,V U,V都是酉矩阵。

所以 A = U D V A = UDV A=UDV,称之为 A A A的奇异值分解.
另外作者知乎ID同名,欢迎关注.
本文完

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值