快速幂,龟速乘,光速乘模板

本文解析了三种高效求解大整数幂运算的算法:快速幂的光速乘法解法,利用长整型和浮点数计算的巧妙方法;龟速乘法,适用于逐位相乘;以及常规的快速幂实现。通过对比,讲解了它们在处理10^18范围内的模运算时的效率提升。
摘要由CSDN通过智能技术生成

快速幂

a b m o d p ( 1 ≤ a , b , p ≤ 1 0 18 ) a^b mod p (1 \le a, b, p \le 10^{18}) abmodp(1a,b,p1018)

ll quick_power(ll a, ll b, ll p) { // ll 是long long类型
    ll ans = 1 % p;
    for(; b; b >>= 1) {
        if(b & 1) ans = ans * a % p;
        a = a * a % p;
    }
    return ans;
}

龟速乘(解法一)

a ∗ b   m o d p ( 1 ≤ a , b , p ≤ 1 0 18 ) a*b \ mod p (1 \le a, b, p \le 10^{18}) ab modp(1a,b,p1018)

ll quick_mul(ll a, ll b, ll p) { // ll 是long long类型
    ll ans = 0;
    for(; b; b >>= 1) {
        if(b & 1) ans = (ans + a) % p;
        a = a * 2 % p;
    }
    return ans;
}

光速乘(解法二)

a ∗ b   m o d p ( 1 ≤ a , b , p ≤ 1 0 18 ) a*b \ mod p (1 \le a, b, p \le 10^{18}) ab modp(1a,b,p1018)

ull mul(ull a, ull b, ull p) { // ull 是 unsigned long long 类型,ll 是long long类型
    a %= p, b %= p;
    ull c = (long double)a * b / p;
    ull x = a * b, y = c * p;
    ll ans = (long long)(x % p) - (long long)(y % p);
    if(ans < 0) ans += p;
    return ans;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值