数据结构课程实验——隐式图的搜索问题——实验预习

数据结构课程实验——隐式图的搜索问题——实验预习

(1)需求分析

3х3九宫棋盘,放置数码为1~8的8个棋子,棋盘中留有一个空格,空格周围的棋子可以移动到空格中,从而改变棋盘的布局。根据给定初始布局和目标布局,移动棋子从初始布局到达目标布局,求解移动步骤并输出。请设计算法,使用合适的搜索策略,在较少的空间和时间代价下找到最短路径。
在这里插入图片描述

(2)A*算法原理

A算法,A(A-Star)算法是一种静态路网中求解最短路径最有效的直接搜索方法,也是解决许多搜索问题的有效算法。算法中的距离估算值与实际值越接近,最终搜索速度越快。
距离估计与实际值越接近,估价函数取得就越好
A* (A-Star)算法是一种静态路网中求解最短路径最有效的直接搜索方法,也是许多其他问题的常用启发式算法。注意–是最有效的直接搜索算法,之后涌现了很多预处理算法(如ALT,CH,HL等等),在线查询效率是A*算法的数千甚至上万倍。

公式表示为: f(n)=g(n)+h(n),

其中, f(n) 是从初始状态经由状态n到目标状态的代价估计,

g(n) 是在状态空间中从初始状态到状态n的实际代价,

h(n) 是从状态n到目标状态的最佳路径的估计代价。

(对于路径搜索问题,状态就是图中的节点,代价就是距离)

h(n)的选取

保证找到最短路径(最优解的)条件,关键在于估价函数f(n)的选取(或者说h(n)的选取)。

我们以d(n)表达状态n到目标状态的距离,那么h(n)的选取大致有如下三种情况:

如果h(n)< d(n)到目标状态的实际距离,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到最优解。
如果h(n)=d(n),即距离估计h(n)等于最短距离,那么搜索将严格沿着最短路径进行, 此时的搜索效率是最高的。
如果 h(n)>d(n),搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。

例如对于几何路网来说,可以取两节点间曼哈顿距离做为距离估计,即f=g(n) + (abs(dx - nx) + abs(dy - ny));这样估价函数f(n)在g(n)一定的情况下,会或多或少的受距离估计值h(n)的制约,节点距目标点近,h值小,f值相对就小,能保证最短路的搜索向终点的方向进行。明显优于Dijkstra算法的毫无方向的向四周搜索。

算法实现(路径搜索)

  (1)创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。

  (2)算起点的h(s);

  (3)将起点放入OPEN表;

  (4)保存路径,即从终点开始,每个节点沿着父节点移动直至起点,这就是你的路径;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值