基于matlab的等光程差面

该博客展示了使用MATLAB进行光学路径差等表面的三维可视化。通过调整参数lamda、d和m,生成了不同模式的等光程差面。首先绘制了m=3的等光程差面,接着叠加了n=5的等光程差面,最后呈现了q=1的等光程差面,直观地展示了不同模式下的光学现象。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

%page 77
%等光程差面
%Equal optical path difference surface

lamda=630*1e-9;
d=0.5*1e-3;
m=3;
[x,y]=meshgrid([-10:0.15:10],[-10:0.15:10]);
u=(x.^2+y.^2)./( (d/2)^2-(m*lamda/2).^2 )+1;
z=(u.*(m*lamda/2).^2).^0.5;

mesh(x,y,z);
%colormap autumn
hold on


n=5;
[x1,y1]=meshgrid([-10:0.15:10],[-10:0.15:10]);
u1=(x1.^2+y1.^2)./( (d/2)^2-(n*lamda/2).^2 )+1;
z1=(u1.*(n*lamda/2).^2).^0.5;

mesh(x1,y1,z1);

hold on


q=1;
[x2,y2]=meshgrid([-10:0.15:10],[-10:0.15:10]);
u2=(x2.^2+y2.^2)./( (d/2)^2-(q*lamda/2).^2 )+1;
z2=(u2.*(q*lamda/2).^2).^0.5;

mesh(x2,y2,z2);
hold off
xlabel('x axis')
ylabel('y axis ')
title('Equal optical path difference surface')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值