Tensorflow使用CUDA进行GPU加速
文章目录
前言
对于刚使用Tensorflow的友友来说配置环境并使用GPU进行加速也是件令人头疼的事情,纯自己折腾会遇到比较多的坑,所以这里详细介绍一下Tensorflow的环境配置
先进入官网查看Tensorflow依赖信息:
https://tensorflow.google.cn/install/source_windows?hl=zh-cn#gpu
目前Tensorflow版本已经更新到2.16.1但是中文官网发布的最新经过测试的构建配置的Tensorflow版本是2.6.0,例如2.6.0版本的Tensorflow对应的Python为3.6-3.9,CUDA为11.2,cuDNN为8.1
语言选择为English后官网发布的最新经过测试的构建配置的Tensorflow版本已经和最新的Tensorflow版本保持一致,但是Windows平台停留在了2.10,因为2.11及以上版本以上已经取消对Windows GPU的支持,可以看到从2.5.0到2.10版本的Tensorflow适配的CUDA和cuDNN版本均相同只是支持的Python有所不同,下面还是以安装2.6.0版本的Tensorflow为例
https://tensorflow.google.cn/install/source_windows#gpu
补充说明:
1.Tensorflow从2.0.0及以后版本后不再区分cpu版本和gpu版本,即cpu版本和gpu版本是一样的
2.从2.11及以上的版本的Tensorflow取消了对Windows平台的GPU的支持,即如果你用的是Window平台并且想使用GPU加速则安装Tensorflow的版本需要在2.10及以下
一、安装Anaconda
Python中很多库都是相互依赖的,而不同版本的库可能会有不少差异,因此就会出现更改某个库的版本后其他库无法正常使用的情况,因此为了解决这个问题一般会创建不同的虚拟环境来管理不同的库,比较常用的就是使用Anaconda来创建不同的虚拟环境。Anoconda相当于是python环境的管理工具,通过创建新的虚拟环境来解决部分库不兼容的问题,下面是安装配置Anaconda的具体步骤:
1.从Anaconda官网下载Anaconda
https://www.anaconda.com/download
直接点击下载最新版即可
2.安装Anaconda并配置环境变量
安装路径可以自行修改
环境变量待会儿自己配置
安装完成的界面:
在系统变量Path中添加以下环境变量:
D:\Program Files\Anaconda3
D:\Program Files\Anaconda3\Library
D:\Program Files\Anaconda3\Scripts
注意:需要替换为你自己的Anaconda安装路径,我这里的安装路径是D:\Program Files\Anaconda3
这里等后面安装Tensorflow时再进行虚拟环境创建
二、安装CUDA和cuDNN
CUDA(ComputeUnified Device Architecture),是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。
cuDNN是基于CUDA的深度学习GPU加速库,有了它才能在GPU上完成深度学习的计算。NVIDIA cuDNN可以集成到更高级别的机器学习框架中,如谷歌的Tensorflow。简单的插入式设计可以让开发人员专注于设计和实现神经网络模型,而不是简单调整性能,同时还可以在GPU上实现高性能现代并行计算。
安装CUDA前先在cmd命令行输入nvidia-smi查看当前的的CUDA 版本,这个版本大于等于你要安装的CUDA 版本就不会出问题,否则可能需要升级驱动或下载更低版本的CUDA Toolkit
nvidia-smi
我的CUDA版本是12.1大于要安装的11.2所以可以放心安装
1.下载安装CUDA Toolkit
进入官网下载CUDA Toolkit:
https://developer.nvidia.com/cuda-toolkit-archive
这里Win11系统也是适用的
2.安装CUDA Toolkit
双击安装程序后出现如下界面,提示设置CUDA Toolkit的临时解压路径,这个目录后续会自动删除,选择一个空间大一点的目录就行
点击OK后就开始解压和安装
安装界面:
选择同意并继续:
选择自定义安装:
取消安装Visual Studio Integration和Display Driver