基于YOLOv8的行人车辆识别系统

基于YOLOv8的行人车辆识别系统
文件:环境、UI、模型训练文件,环境配置文档,测试图片视频,训练、测试及界面代码。
功能:基于深度学习的行人车辆检测计数系统,pyqt界面。能检测图像、视频并保存结果,展示目标位置、置信度等信息。可检测目标数目,支持摄像头实时检测、展示、记录与保存,能切换目标查看位置,提供数据集和训练代码用于重新训练。

在这里插入图片描述

基于YOLOv8的行人车辆识别系统可以实现对图像或视频中行人和车辆的高效识别。下面将提供一个简单的指南,包括如何设置环境、加载模型以及使用YOLOv8进行行人和车辆的识别。请注意,由于YOLOv8是较新的版本,确保你的环境中安装了最新版的ultralytics库。

环境配置

首先,你需要安装必要的依赖。可以通过pip来安装ultralytics库,该库包含了YOLOv8的所有变体。

pip install ultralytics

加载模型并进行预测

下面是一个完整的Python脚本示例,演示了如何使用YOLOv8模型来检测图像中的行人和车辆。

from ultralytics import YOLO
import cv2

def load_model(model_path=None):
    """
    加载预训练的YOLOv8模型。如果没有指定路径,则自动下载并使用默认的预训练模型。
    :param model_path: 预训练模型的路径(可选)
    :return: 加载的YOLO模型
    """
    if model_path:
        model = YOLO(model_path)
    else:
        # 使用YOLOv8n作为示例,也可以选择其他如YOLOv8s, YOLOv8m等
        model = YOLO('yolov8n.pt')
    return model

def detect_objects(image_path, model):
    """
    对给定的图像进行目标检测。
    :param image_path: 输入图像的路径
    :param model: 已加载的YOLO模型
    """
    results = model(image_path)  # 进行预测
    
    img = cv2.imread(image_path)
    
    for result in results:
        boxes = result.boxes.numpy()
        for box in boxes:
            r = box.xyxy
            # 绘制边界框
            cv2.rectangle(img, (int(r[0]), int(r[1])), (int(r[2]), int(r[3])), (0, 255, 0), 2)
            
            # 显示类别和置信度分数
            label = f"{model.names[int(box.cls)]} {box.conf:.2f}"
            cv2.putText(img, label, (int(r[0]), int(r[1])-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,0,0), 2)
    
    # 显示结果图像
    cv2.imshow("Detected Objects", img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

if __name__ == "__main__":
    # 加载模型
    model = load_model()
    
    # 检测对象
    detect_objects("path/to/your/image.jpg", model)

说明

  • 模型选择:在上面的例子中,默认使用的是yolov8n.pt,这是YOLOv8系列中的一个小型模型。根据实际需要,可以选择更大规模的模型以获得更好的性能,比如yolov8s.pt, yolov8m.pt等。你可以从YOLO官方GitHub获取这些模型。
  • 输入输出:这个例子假设你有一个图像文件,并且会显示带有检测到的对象边界框的图像。你可以修改此代码以处理视频流或其他类型的输入。
  • 实时检测:如果想要实现实时行人和车辆检测,可以考虑从摄像头捕获视频帧,并将其逐帧传递给YOLO模型进行分析。

环境配置

软件:Pycharm+Anaconda
环境:python=3.9 opencv PyQt5 torch1.9

### YOLOv8 行人车辆识别系统实现教程 #### 一、环境搭建 为了构建基于YOLOv8行人车辆识别系统,需先安装必要的软件包。确保Python版本不低于3.6,并使用`pip`工具来管理依赖项。 ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 pip install ultralytics ``` 上述命令会安装PyTorch框架以及Ultralytics公司开发的支持YOLO系列模型训练推理等功能的库[^1]。 #### 二、准备数据集 高质量的数据对于任何计算机视觉项目都至关重要。针对本案例中的应用场景——即夜间环境下对不同类型交通工具(如轿车、公共汽车、摩托车等)及行人的分类任务而言,建议收集或选用已有的公开标注过的图像集合作为输入素材。考虑到特定条件下的挑战性因素(比如低光照水平),可以考虑加入专门为此设计的数据增强技术以提高泛化能力[^2]。 #### 三、配置文件调整 创建一个新的`.yaml`格式配置文档用于定义网络结构参数和其他超参设置。此部分主要涉及修改预设路径指向本地存储位置;指定类别名称列表;设定初始权重加载方式等内容。具体操作可参照官方给出的例子并做适当改动适应实际需求。 #### 四、模型训练过程 启动训练之前要确认所有准备工作已经就绪,包括但不限于GPU资源分配情况检查、数据读取管道畅通无阻等方面。执行如下指令即可触发整个流程: ```python from ultralytics import YOLO model = YOLO('yolov8.yaml') # 加载自定义配置 results = model.train(data='path/to/dataset', epochs=100, batch=-1) ``` 这里假设读者已完成前面提到的各项前置作业,则只需简单调用API接口就能轻松完成一轮完整的迭代更新动作[^4]。 #### 五、评估性能指标 当训练完成后应当立即着手于效果评测环节。借助混淆矩阵、平均精度均值(mAP)等多种统计量度可以帮助全面了解所建立起来的目标探测器究竟达到了怎样的水准。此外还可以绘制ROC曲线或者PR曲线上述材料中也有所提及,以此直观展示不同阈值下真阳性和假阳性之间的权衡关系。 #### 六、部署至生产环境 最后一步就是把训练好的模型集成到实际应用当中去。如果采用的是图形界面应用程序的话,那么可能需要用到像Qt这样的跨平台GUI工具箱配合Python编程语言共同打造友好易用的人机交互窗口[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值