做题记录 牛客寒假基础训练1-H

在这里插入图片描述暴力复杂度达到O(n2),所以必须另辟蹊径。
由于带绝对值所以我的思路是分类讨论。
考虑序列中的某一个数j,假设大于等于1000-a[j]的数共有m个,假设第i个这样的数为 a z i a_{z_{i}} azi,则这部分的和为
a j + a z 1 − 1000 + a j + a z 2 − 1000 + . . . + a j + a z m − 1000 a_j+a_{z_{1}}-1000+a_j+a_{z_{2}}-1000+...+a_j+a_{z_{m}}-1000 aj+az11000+aj+az21000+...+aj+azm1000
= m a j − 1000 m + ∑ i = 1 m a z i =ma_j-1000m+\sum \limits_{i=1}^{m}a_{z_{i}} =maj1000m+i=1mazi
同样,另一部分(假设为 a f i a_{f_{i}} afi)的和也可导出一个公式,两部分相加得到
结果= ∑ j = 1 n [ ( 2 m − ( n + 1 − j ) ) ( a j − 1000 ) + ∑ a z i − ∑ a f i ] \sum \limits_{j=1}^n[(2m-(n+1-j))(a_j-1000)+\sum a_{z_{i}}-\sum a_{f_i}] j=1n[(2m(n+1j))(aj1000)+aziafi]
试验发现排序后结果不变(考场上没发现这个就没做出来……),所以只要对原序列排序、求前缀和,再利用二分即可。

实现如下:

llong res=0;
sort(a+1,a+n+1);
for(int i=1; i<=n; i++)	   sum[i]=sum[i-1]+a[i];
sum[n+1]=sum[n];
for(int i=1; i<=n; i++) {
	int cnt=n+1-i;
	int f=lower_bound(a+i,a+n+1,1000-a[i])-a; //找到第一个大于等于val的位置
	int m=n+1-f; //和-1000后大于等于0的数字个数
	res+=(2*m-cnt)*(a[i]-1000)+(sum[n]-sum[f-1])-(sum[f-1]-sum[i-1]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值