acm第六周学习规划学习总结

acm线性规划学习总结
一,动态规划是分阶段求最优值的算法。
将复杂问题按阶段划分成子问题;
枚举子问题各种可能情况,从中找出最优值;
利用子问题的最优值求得源问题的最优解;
二,
动态规划解题过程:
1、判断问题是否具有最优子结构性质,若不具备则不能用动态规划。
2、把问题分成若干个子问题(分阶段)。
3、建立状态转移方程(递推公式)。
4、找出边界条件。
5、将已知边界值带入方程。
6、递推求解。
三,
最长上升子序列-1

   一个数的序列bi,当b1 < b2 < ... < bS 的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, ..., aN),我们可以得到一些上升的子序列(ai1, ai2, ..., aiK),这里1 <= i1 < i2 < ... <iK <= N。
   比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).

你的任务,就是对于给定的序列,求出最长上升子序列的长度。
输入数据
输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N 个整数,这些整数的取值范围都在0 到10000。
输出要求
最长上升子序列的长度。
输入样例
7
1 7 3 5 9 4 8
输出样例
4
实现代码

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int i,j,n,max;
cin>>n;
	int a[n+1],m[n+1];
	for(i=1;i<=n;++i)
		cin>>a[i];
	m[1]=1;
	for(i=2;i<=n;++i)
	{
		max=m[1];
		for(j=1;j<i;++j)
		{
			if(a[j]<a[i]&&m[j]>max)
				max=m[j];
		}
		m[i]=max+1;
	}
	max=0;
	for(i=1;i<=n;++i)
	{
		if(m[i]>max)
			max=m[i];
	}
	cout<<max;
	return 0;
}

本题总结:
这个题让我们去求最长上升子序列,我们可以把这个问题简化为求第i个元素的最长子序列的长度
当i=1时,M(1)=1
当i>=1时,M(i)=max(M(j))此时要求 j>=1 && j<=i-1 && xj<xi
最后对全部的序列进行排序找到最大的就可以了。
四,学习总结

经过了两周的动态规划(dp)的学习,我感觉动态规化的题目比贪心难好多,我觉得动态规划中最难的还是要想出状态转移方程,做dp的题的时候要思考很久,还不一定有什么思路,但解决问题不仅要有思路还要考虑时间复杂度,而且还要注意边界问题,我就经常因为边界的值不确定而ac不了,而且对于线性规划的题一部分不能用朴素的思维去解决,而是要想办法去优化,优化时间和空间的复杂度,降低循环次数才能找到最优的状态转移方程。虽然已经学习了两周,我还是觉得对于线性规划只是学到了皮毛,做起作业来也很困难,一道题经常有十几个为wrong answer 才能ac,对于dp的学习,要多刷题,找到其中的规律。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值