注:本题只写了o(n2)的时间复杂度
题目描述
某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
输入导弹依次飞来的高度(雷达给出的高度数据是\le 50000≤50000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
输入格式
1行,若干个整数(个数 ≤100000)
NOIP 原题数据规模不超过 2000。
输出格式
2行,每行一个整数,第一个数字表示这套系统最多能拦截多少导弹,第二个数字表示如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
输入输出样例
输入
389 207 155 300 299 170 158 65
输出
6
2
分析:第一问就是一个最长不下降序列,第二问根据Dilworth定理(对偏序集<A,≤>,设A中最长链的长度是n,则将A中元素分成不相交的反链,反链个数至少是n。来自度娘的基本介绍。)就可以转化成求最长上升子序列。(不会证明。。。)
代码:
#include <bits/stdc++.h>
#define eps 1e-15
using namespace std;
int a[100005],dp[100005],n;
void solve(){
//求最大拦截个数
dp[1] = 1;
for(int i = 2; i <= n; i++){
int sum = 0;
for(int j = 1; j < i; j++)
if(dp[j] > sum && a[j] >= a[i])sum = dp[j];
dp[i] = sum+1;
}
}
int main()
{
n=0;
while(scanf("%d",&a[n+1]) != EOF){
n++;
}
solve();
int maxx=dp[1];
for(int i = 2; i <= n; i++)
{
if(dp[i] > maxx)maxx = dp[i];
}
cout<<maxx<<endl;
//求拦截全部导弹需要几个系统
for(int i = 2; i <= n; i++){
int maxx = 0;
for(int j = 1; j < i; j++)
if(a[i] >a[j] ) maxx = max(maxx,dp[j]);
dp[i] = maxx+1;
}
maxx=dp[1];
for(int i = 2; i <= n; i++)
{
if(dp[i] > maxx)maxx = dp[i];
}
cout<<maxx;
}
2022/4/4更改
使用动态规划计算单调递减子序列的个数
b[i]表示前i个导弹有几个递减子序列。
b[0]=1;
b[i]= max{ b[j] } + 1。1<=j<i && a[i] > a[j]
代码:
#include <bits/stdc++.h>
#define eps 1e-15
using namespace std;
int a[100005],dp[100005],n;
int k,b[100005];
void solve(){
dp[1] = 1;
b[1] = 1;
for(int i = 2; i <= n; i++){
int sum = 0;
k=0;
for(int j = 1; j < i; j++){
if(dp[j] > sum && a[j] >= a[i])sum = dp[j];
if(a[j] < a[i] && k < b[j])k = b[j];
}
dp[i] = sum+1;
b[i] = k+1;
}
}
int main()
{
n=0;
while(scanf("%d",&a[n+1]) != EOF){
n++;
}
solve();
int maxx1=dp[1],maxx2=b[1];
for(int i = 2; i <= n; i++)
{
if(dp[i] > maxx)maxx1 = dp[i];
if(b[i] > maxx)maxx2 = b[i];
}
cout<<maxx<<endl<<maxx;
}