题目描述
检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子。
例如,可以用序列2 4 6 1 3 5来描述一个布局,第i个数字表示在第i行的相应位置有一个棋子。
请遍一个程序找出所有跳棋放置的解。并把它们以上面的序列方法输出。解按字典顺序排列。请输出前3个解。最后一行是解的总个数。
输入
使一个数字N (6 <= N <= 13) 表示棋盘是N x N大小的。
输出
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
样例输入 Copy
6
样例输出 Copy
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
提示
回溯
#include <iostream>
#include <stdio.h>
#include <math.h>
#include <algorithm>
#include <string.h>
using namespace std;
const int MAXN = 1005;
int n, s = 0, cnt = 0, cnt2 = 0;
int vis[MAXN][MAXN], ans[MAXN][MAXN], map[MAXN][MAXN];
void dfs(int x)
{
if (x > n)
{
s++;
cnt++;
if (cnt <= 3)
{
cnt2 = 0;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
if (map[i][j] == 1)
{
cnt2++;
ans[cnt][cnt2] = j;
}
}
}
}
return;
}
for (int i = 1; i <= n; i++)
{
if (vis[x][i] == 0)
{
// cout << x << ", " << i << endl;
vis[x][i]++;
map[x][i] = 1;
for (int j = 1; j <= n; j++)
{
vis[x][j]++;
if (j >= x)
{
vis[j][i]++;
}
if (x + j <= n && i >= j)
{
vis[x + j][i - j]++;
}
if (x + j <= n && i + j <= n)
{
vis[x + j][i + j]++;
}
}
dfs(x + 1);
vis[x][i]--;
map[x][i] = 0;
for (int j = 1; j <= n; j++)
{
vis[x][j]--;
if (j >= x)
{
vis[j][i]--;
}
if (x + j <= n && i >= j)
{
vis[x + j][i - j]--;
}
if (x + j <= n && i + j <= n)
{
vis[x + j][i + j]--;
}
}
}
}
}
int main()
{
cin >> n;
dfs(1);
for (int i = 1; i <= 3; i++)
{
for (int j = 1; j <= n; j++)
{
cout << ans[i][j] << " ";
}
cout << endl;
}
cout << cnt << endl;
return(0);
}