零基础多图详解图神经网络(GNN/GCN)【李沐论文精读】

A Gentle Introduction to Graph Neural Networks

在这里插入图片描述

在上图中,每一层都是一层网络,每一层的节点都受到下一层中自身节点和邻居节点的影响。如果网络比较深,是可以处理到一幅图中较大范围的节点。

前言

图神经网络在应用上还只是起步阶段,应用领域有药物发现、物理模拟、虚假新闻检测、车流量预测、推荐系统等。这篇文章是探索和解释现代图神经网络,第一部分是什么样的数据能表示成一张图,第二部分是图和别的数据有什么不同,第三部分是构建GNN的模块,第四部分是搭建一个GNN的playground

图是一个序列。图越深,上层的节点链接的下次节点越多

什么是图

把节点信息、边信息和全局信息做embedding,通俗地说就是把这些信息存储为向量的形式。所以图神经的核心就是,怎么样把我们想要的信息表示成向量,以及向量是否能通过数据学习到

在图上使用机器学习的挑战是什么?
需要的是节点、边、全局信息、连接性四种类型的信息来做预测。
连接性是用邻接矩阵来存储,如果图非常大,比如Wikipedia,则存储不下来。由于是邻接矩阵很稀疏,所以用稀疏矩阵来存储会更好,而稀疏矩阵在GPU上训练一直是个技术难题。
邻接矩阵任意交换行列,会导致邻接矩阵改变,他们其实节点关系不变,文章给出了下面这个例子(动态图)表示不同样子的邻接矩阵都形成了连接性相同的图,而他们都是异构的。
在这里插入图片描述
那么想要存储高效且不受排序的影响应该如何存储呢?
在这里插入图片描述
上图中的节点、边和全局信息都可以用向量表示,而不一定只是标量。这个adjacency list能够用节点id把边的连接关系表示出来。

图神经网络

介绍完图的背景后,现在开始介绍图神经网络(GNNs)。
什么是GNNs?是对图上所有属性进行可以优化的变换,变换能保持图的对称信息(节点重新排序后,结果不变)。message passing neural network是一种GNNs的框架,当然GNN是可以用别的方式构建。
GNNs是“graph-in, graph-out”,他会对节点、边的信息进行变换,但是图连接性是不变的。
首先,对节点向量、边向量、全局向量分别构建一个MLP(多层感知机),MLP的输入输出的大小相同
在这里插入图片描述
三个MLP组成GNN的一层,一个图经过MLP后仍然是一个图。对于顶点、边、全局向量 分别 找到对应的MLP,作为其更新函数(update function)。可以看到,输出后图的属性变化了,但是图的结构没有改变,符合我们的需求。MLP对每个向量独自作用,不会影响的连接性

堆叠了多层上述的模型后得到了GNN,现在来到最后一层,对节点进行预测。
在这里插入图片描述
上图可以看到,经过GNN的最后一层,得到的也是一个图,然后在图后面接一个全连接层(分类的话神经元数量则是类别数,再套一个softmax,回归的话神经元数量则是1),所有节点共享一个全连接层。
考虑另一种情况,如果说某个节点是没有自己的属性(向量)的,应该怎么做?这里介绍到pooling
在这里插入图片描述
做法就是把节点相连的边向量拿出来,全局向量拿出来,然后将这些向量相加求和,最后经过一个节点共享的输出层得到节点预测结果。
在这里插入图片描述
假如没有边向量而只有节点的向量,则汇聚相连的节点的向量,如下图所示:
在这里插入图片描述
那如果没有全局向量,只有节点向量呢?就把全部的节点向量汇聚起来,经过最后的输出层得到全局的输出。
在这里插入图片描述
所以,不管缺哪类属性,我们都可以通过汇聚这个操作,得到最终的输出值。下图则是GNN流程的描述。
在这里插入图片描述
如上模型的局限性是很明显的,并没有用到图的结构,仅仅是点、边向量分别做MLP的过程。

解决方法:信息传递

在这里插入图片描述
在更新某个节点的向量时,会将自己的向量和邻居节点的向量进行聚合(相加)操作,然后再传入MLP更新节点的向量。作者说这个过程和标准卷积相似,但其实不完全是。下图则是GCN的架构涉及,通过聚集邻居节点来更新节点的表达
在这里插入图片描述

学习边的表示

下图是信息传递层的原理,从节点到边、边到节点的传递。

边和顶点之间的信息传递,用于预测位置的属性
在这里插入图片描述
下面是两种不同的聚集方式:先从节点到边/先从边到节点。现在对于哪种做法更好还没有定论,作者提出可以交替进行(下图种的weave layer),只是向量会更宽一些。
在这里插入图片描述

添加全局表示

如果说图很大,或者连接不够紧密,那聚合就需要走很远很远的路。这里介绍了一种解决方案:master node or context vector,这是一个虚拟的、抽象的 点,与所有的节点和边相连。

在这里插入图片描述
在这里插入图片描述
作者说这个其实可以认为是featurize-wise attention mechanism(特征级的注意力机制),因为将相近的节点聚集了过来。现在我们就知道了基于消息传递的图神经网络是怎么样工作的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值