脉冲视觉-图像重建-Spk2ImgNet

一、简介

        Spk2ImgNet即脉冲到图像的神经网络,一种分层架构,以逐步利用脉冲流的时间相关性。首先,提出了一个空间自适应的光推理子网来利用局部时间相关性,产生不同时刻的基本光强估计。然后,利用金字塔可变形对齐来对齐中间特征,以便特征融合模块可以利用长期时间相关性,同时避免不希望出现的运动模糊。

二、组成结构(分为如下三层的深度卷积网络)

        首先,输入的脉冲流被划分为五个重叠的短期脉冲块{Bl2,Bl1,Bk,Br1,Br2},并将光推理子网应用于这些脉冲块,以自适应地利用局部时间相关性,产生几个粗估计堆栈{I ~ l2, I ~ l1, I ~ k, I ~ r1, I ~ r2}。在这里,{l1, l2}和{r1,r2}是对称分布在k点一侧的参考时间点。特别是光推理模块是空间自适应的,可以自动调整时间尺度以适应各种运动和光照条件。随后,将5个权重特征提取模块应用于粗重建,提取深度特征{Fl2,Fl1,Fk, Fr1,Fr2}。最后,为了进一步提高重建质量,级联了一个运动对齐的图像重建子网,以利用长期时间相关性,同时避免运动模糊。在这个子网中,首先采用金字塔可变形对齐来对齐参考特征和关键特征,生成对齐的参考特{F¯l2,F¯l1,F¯r1,F¯r2}。然后,将对齐的参考特征与关键特征集成,重建高质量的图像Iˆk。

        1.空间自适应光推断(SALI)子网

        为了解决由于场景内容的多样性,固定的时间尺度很难很好地处理场景中的所有像素问题,我们提出了一个空间自适应的光线推理子网(如下图所示),以自适应地利用局部时间相关性,使其能够适应各种运动和光线条件。首先,应用多尺度光推理模块来inter具有不同时间尺度的瞬时光强。然后,利用空间自适应选择模块自动选择合适的时间尺度;

(1)多尺度光推理

将几个具有不同时间尺度的并行可学习滤波器应用于输入的短期脉冲块Bt∈RH×W×N,每个滤波器都生成一个粗略的瞬时光强估计一定的时间尺度:

(这里Mi表示第i个分支的时间掩模,hi(·)表示基于级联卷积和激活层的可学习的时间滤波操作,◦表示元素级乘法。)

(2)空间自适应时间尺度选择

引入一个注意力块a(·)来学习调制尺度映射

使网络可以更专注于使用适当的时间尺度的估计。这里m是分支的数量,[,]表示特征拼接。SALI子网的输出是基于不同时间尺度依赖性的缩放粗略估计的堆栈(这里输出的堆栈是指不同时刻的瞬时光强):

        2.特征提取(FE)子网

        从每个粗估计堆栈中提取深度特征Ft,可以表示为:这里ft(·)表示特征提取操作。使用几个堆叠的残差块来构建我们的特征提取模块,如下图所示:【特别地,使用了长跳跃连接来转发信息,缓解训练难度。为了降低网络的复杂性,ft(·)的参数在所有分支中共享。】

        3.运动对齐图像重建(MAIR)子网(级联一个运动对齐子网,以利用长期时间相关性并细化重建,而不引入运动模糊)

(1)金字塔可变形特征对齐

        我们引入了一个基于可变形卷积(在可变形卷积中,通过学习额外的偏移量来增加空间采样位置)的pyra-mid可变形对齐(PDA)模块[3,38],将参考特征{Fl2,Fl1,Fr1,Fr2}与关键特征Fk对齐。为了有效地处理大型和复杂的运动,我们在由粗到细的过程中执行可变形对齐。

        如上图所示,给定参考特征Ft,t∈{l2,l1,r1,r2}和关键特征Fk,我们将这些特征下采样为l级特征,即{Ft (l)}和{Fk (l)}, l = 1,2,···,l。使用金字塔特征,我们首先将较低尺度的特征与粗估计对齐,然后将对齐的特征和学习到的偏移量传播到较高尺度以改进估计。l级对齐的参考特征可以通过计算:

(其中p = (x, y)是中心坐标,n是采样位置的数量,wi是第i个权重,pi是第i个固定偏移量。∆c i(l)和∆p i(l)为第i个调制标量和第i个可学习偏移量,根据(l−1)第1级估计偏移量∆P(l−1)和第l级参考特征Ft(l)和关键特征Fk (l)预测。)

(2)基于可靠性的特征融合

        对于对齐的特征{F¯l2, F¯l1, Fk, F¯r1, F¯r2},我们使用特征融合模块(如下图所示)在长时间范围内融合特征。

由于物体遮挡和光照变化的存在,对齐在某些地区可能不可靠。为了有效地整合对齐特征,我们引入了一个可靠性估计器(RE)来衡量对齐特征中每个像素的可靠性。为了获得对齐特征的可靠性图F¯t,t∈{l2,l1,r1,r2},我们将F¯t连同关键特征Fk提供给可靠性估计器et(·),产生可靠性图:

借助可靠性图,采用鲁棒融合重建最终图像:

【这里g(·)表示基于级联卷积层和激活层的重建函数】

三、该方法的最终性能评估

        与在此方法研究之前的TFI、TFP、TVS相比较之下,不管是在合成数据集上,还是在真实数据集上,对应即PSNR和SSIM和NIQE指标都远远由于其最初始的方法。重构出来的图像质量效果远远超过其最初重建方法。

        不过此方法在图像重建上仍会产生噪声,目前已经研究出更优于此方法的图像重建方法,各位读者可以去查阅相关资料,研究道路可长,诸位同行们一起加油吧!

参考文献:“Spk2ImgNet: Learning To Reconstruct Dynamic Scene From Continuous Spike Stream” Jing Zhao, Ruiqin Xiong, Hangfan Liu, Jian Zhang, Tiejun Huang

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值