一维
简单描述:
给一个一维数组,如何求和最大连续子序列
分析
考虑相邻两元素即可
已知f[i], 求f[i + 1]
- f[i] > 0, f[i + 1] = fi[] + a[i]
- f[i] <= 0, f[i + 1] = a[i];
时间复杂度:O(n)
二维
题目描述
题目链接
给定一个包含整数的二维矩阵,子矩形是位于整个阵列内的任何大小为1 * 1或更大的连续子阵列。
矩形的总和是该矩形中所有元素的总和。
在这个问题中,具有最大和的子矩形被称为最大子矩形。
样例输入
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
输出:
15
最大子矩阵:
9 2
-4 1
-1 8
分析
-
知道起点坐标(两循环),终点坐标(又是两循环),根据前缀和公式算出, 时间比较悬
-
枚举子矩阵的上界下界,变成一维问题(由前缀和公式求出这一列的和是多少)
-
时间复杂度: O(n ^ 3)
-
先求出每一列的前缀和
-
在某段上下界内。如图中的i, j这段内,每一列的和
g[j][k] - g[i - 1][k]
-
注意j只能从i开始循环,要不就乱套了嘛
#include <iostream>
#include <algorithm>
using namespace std;
int n;
const int N = 110;
int g[N][N];
int main(void){
cin >> n;
for(int i = 1; i <= n; i ++){
for(int j = 1; j <= n; j ++){
cin >> g[i][j];
g[i][j] += g[i - 1][j]; //算出某一列中该点及以上的和
}
}
int res = -300;
for(int i = 1; i <= n; i ++){
for(int j = i; j <= n; j ++){
int last = 0;//主要检查是否前边的为负数
for(int k = 1; k <= n; k ++){
last = max(last, 0) + g[j][k] - g[i - 1][k];
res = max(res, last);
}
}
}
cout << res << endl;
return 0;
}