求连续最大和(一维、二维)

求连续最大和(一维、二维)

一维

简单描述:
给一个一维数组,如何求和最大连续子序列

分析

考虑相邻两元素即可
已知f[i], 求f[i + 1]

  1. f[i] > 0, f[i + 1] = fi[] + a[i]
  2. f[i] <= 0, f[i + 1] = a[i];
    时间复杂度:O(n)

二维

题目描述

题目链接
给定一个包含整数的二维矩阵,子矩形是位于整个阵列内的任何大小为1 * 1或更大的连续子阵列。
矩形的总和是该矩形中所有元素的总和。
在这个问题中,具有最大和的子矩形被称为最大子矩形。

样例输入
0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 
输出:
15
最大子矩阵:
9 2 
-4 1 
-1 8 

分析

  1. 知道起点坐标(两循环),终点坐标(又是两循环),根据前缀和公式算出, 时间比较悬

  2. 枚举子矩阵的上界下界,变成一维问题(由前缀和公式求出这一列的和是多少)

  3. 时间复杂度: O(n ^ 3)

  4. 先求出每一列的前缀和

  5. 在某段上下界内。如图中的i, j这段内,每一列的和
    g[j][k] - g[i - 1][k]

  6. 注意j只能从i开始循环,要不就乱套了嘛
    在这里插入图片描述

#include <iostream>
#include <algorithm>
using namespace std;
int n;
const int N = 110;
int g[N][N];
int main(void){
    cin >> n;
    for(int i = 1; i <= n; i ++){
        for(int j = 1; j <= n; j ++){
            cin >> g[i][j];
            g[i][j] += g[i - 1][j]; //算出某一列中该点及以上的和
        }
    }
    int res = -300;
    for(int i = 1; i <= n; i ++){
        for(int j = i; j <= n; j ++){
            int last = 0;//主要检查是否前边的为负数
            for(int k = 1; k <= n; k ++){
                last = max(last, 0) + g[j][k] - g[i - 1][k];
                res = max(res, last);
            }
        }
    }
    cout << res << endl;
    return 0;
    
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xuhx&

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值