错排问题
一、错排公式
举例子:n人抽奖,求所有人都不中奖的概率
分析
f ( n ) 为 n 个人拿的都不是自己的票的拿票方法数
假设有N - 1 个人满足错排(每个人拿的都不是自己的票),再来一个人(他手中拿的是自己的票),他与前 N - 1 中任何一个人交换票,都能满足N个人的错排。这时的的方法数为 (n - 1)* f ( n - 1)
假设有 N - 1 个人不满足错排, 当来了一个人时,他与这 N - 1 个人中的其中一个交换后,满足 N 个人的错排。这种情况在原先 N - 1 个人中, 有 N - 2个人满足错排,只有一个人拿着自己的票,当这个拿着自己票的人与来了的这一个人交换后,就满足了N个人的的错排。而这只有一个拿着自己票的人可以是N - 1 个人中的任意一个。所以,这是的方法数为 (n - 1)* f( n - 2)
f(n) = (n - 1) * (f[n - 1] + f[n - 2])
n个人抽奖不放回:第一个人抽奖n种, 第二个人 n - 1种,总共 n!种
a[1] = 0; a[2] = 1; //记录全都中不了奖的方法数
b[1] = 1; b[2] = 2;//中奖、不中奖、总种数
for (int i = 3; i <= m; i++) {
a[i] = (i - 1) * (a[i - 1] + a[i - 2]);
b[i] = b[i - 1] * i;
}
printf("%.2lf%%\n", (a[m] / b[m]) * 100)
二、n个人中m个人错排
分析
组合数C(n,m)乘以m个元素错排即可
组合公式
题目链接
#include <stdio.h>
long long arr[30];
long long fun(int a, int b){
long long c = 1;
if(b == 0) return 1;
for(long long i = 1; i <= b; i++){
c = c * (a - i + 1) / i; //排列组合公式
}
return c;
}
int main(void){
int n;
arr[1] = 0;
arr[2] = 1; //错排的起始种类不要弄错
for(int i = 3; i <= 25; i++){
arr[i] = (i-1) * (arr[i-1] + arr[i-2]);
}
while(scanf("%d", &n), n){
long long sum = 1; //在函数里定义要注意初始化
for(int i = 1; i <= n/2; i++){
sum = arr[i] * fun(n, i) + sum;
}
printf("%lld\n",sum);
}
return 0;
}
/*注意三个人没有答对两个的情况,只有全答对一种情况*/