错排问题简析

一、错排公式

举例子:n人抽奖,求所有人都不中奖的概率

分析

  f ( n ) 为 n 个人拿的都不是自己的票的拿票方法数
  假设有N - 1 个人满足错排(每个人拿的都不是自己的票),再来一个人(他手中拿的是自己的票),他与前 N - 1 中任何一个人交换票,都能满足N个人的错排。这时的的方法数为 (n - 1)* f ( n - 1)

   假设有 N - 1 个人不满足错排, 当来了一个人时,他与这 N - 1 个人中的其中一个交换后,满足 N 个人的错排。这种情况在原先 N - 1 个人中, 有 N - 2个人满足错排,只有一个人拿着自己的票,当这个拿着自己票的人与来了的这一个人交换后,就满足了N个人的的错排。而这只有一个拿着自己票的人可以是N - 1 个人中的任意一个。所以,这是的方法数为 (n - 1)* f( n - 2)

f(n) = (n - 1) * (f[n - 1] + f[n - 2])
n个人抽奖不放回:第一个人抽奖n种, 第二个人 n - 1种,总共 n!种

a[1] = 0; a[2] = 1;  //记录全都中不了奖的方法数
b[1] = 1; b[2] = 2;//中奖、不中奖、总种数
for (int i = 3; i <= m; i++) {
		a[i] = (i - 1) * (a[i - 1] + a[i - 2]); 		
		b[i] = b[i - 1] * i;
}
printf("%.2lf%%\n", (a[m] / b[m]) * 100)

二、n个人中m个人错排

分析
组合数C(n,m)乘以m个元素错排即可

组合公式
在这里插入图片描述
在这里插入图片描述
题目链接

#include <stdio.h>
long long arr[30];

long long fun(int a, int b){
    long long c = 1;
    if(b == 0) return 1;
    for(long long i = 1; i <= b; i++){
        c = c * (a - i + 1) / i;   			//排列组合公式
    }
    return c;
}
int main(void){
    int n;
    arr[1] = 0;
    arr[2] = 1; //错排的起始种类不要弄错
    for(int i = 3; i <= 25; i++){
        arr[i] = (i-1) * (arr[i-1] + arr[i-2]);
    }
    while(scanf("%d", &n), n){
        long long sum = 1;   //在函数里定义要注意初始化
        for(int i = 1; i <= n/2; i++){
            sum = arr[i] * fun(n, i) + sum;
        }
        printf("%lld\n",sum);
    }
    return 0;
}

/*注意三个人没有答对两个的情况,只有全答对一种情况*/
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xuhx&

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值