一、概念
什么是并查集?
并查集是一种用来管理元素分组
情况的数据结构。并查集可以高效地查询两个元素是否在同一个集合、合并两个不同的集合。
不过需要注意并查集虽然可以进行合并
操作,但是却无法进行分割
操作。
初始化:
在初始化并查集时,每个元素都是单独的一个集合
void init() {
for (int i = 0; i < n; ++i) {
father[i] = i;
}
}
查找:
查找两个元素是否属于同一个集合就是查找两个元素是否在同一个树上
这里采用了路径压缩
int find(int u) {
if(fater[u] != u) father[u] = find(father[u]);
return father[u];
}
合并:
我们将两个集合看作两个树,合并存在于两个树的元素时,将另一颗树的根连到另一个树上。
void join(int u, int v) {
u = find(u);
v = find(v);
if (u == v) return ;
father[v] = u;
}
合并时有可能会存在链路过长,我们可以用一个rank[]数组记录每个树的高度,然后将矮树联合到高树上。(按秩合并)
//按秩合并初始化
void init() {
for (int i = 0; i < n; ++i) {
father[i] = i;
rank[i] = 0;
}
}
void join(int u, int v) {
u = find(u);
v = find(v);
if (u == v) return ;
if(rank[u] < rank[v]) {
father[u] = v;
} else {
father[v] = u;
if(rank[u] == rank[v]) {
rank[u] ++;
}
}
}
二、模板
int n = 1005; // 节点数量3 到 1000
int father[1005];
// 并查集初始化
void init() {
for (int i = 0; i < n; ++i) {
father[i] = i;
}
}
// 并查集里寻根的过程
int find(int u) {
if(fater[u] != u) father[u] = find(father[u]);
return father[u];
}
// 将v->u 这条边加入并查集
void join(int u, int v) {
u = find(u);
v = find(v);
if (u == v) return ;
father[v] = u;
}
// 判断 u 和 v是否找到同一个根
bool same(int u, int v) {
u = find(u);
v = find(v);
return u == v;
}
并查集主要有三个功能。
- 寻找根节点,函数:find(int u),也就是判断这个节点的祖先节点是哪个
- 将两个节点接入到同一个集合,函数:join(int u, int v),将两个节点连在同一个根节点上
- 判断两个节点是否在同一个集合,函数:same(int u, int v),就是判断两个节点是不是同一个根节点
注:
合并:
路径压缩:
三、例题
题:684. 冗余连接
树可以看成是一个连通且 无环
的 无向
图。
给定往一棵 n 个节点 (节点值 1~n) 的树中添加一条边后的图。添加的边的两个顶点包含在 1 到 n 中间,且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n 的二维数组 edges ,edges[i] = [ai, bi] 表示图中在 ai 和 bi 之间存在一条边。
请找出一条可以删去的边,删除后可使得剩余部分是一个有着 n 个节点的树。如果有多个答案,则返回数组 edges 中最后出现的边。
示例 1:
输入: edges = [[1,2], [1,3], [2,3]]
输出: [2,3]
示例 2:
输入: edges = [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]
提示:
n == edges.length
3 <= n <= 1000
edges[i].length == 2
1 <= ai < bi <= edges.length
ai != bi
edges 中无重复元素
给定的图是连通的
解:
解题思路:
题目大意是给定一个无向图,删除一条边,使得结果图是一个有n个节点的树(其实就是找环,删边)
- 遍历每一条边,如果边的两个节点不在同一个集合中,就加入集合。
- 如果边的两个节点已经出现在集合中了,说明如果着边的两个节点已经连在一起了,如果在加入这条边一定会出现环。
AC代码:
class Solution {
int n = 1005; // 节点数量从3-1000
int father[] = new int[1005];
// 并查集初始化
void init() {
for(int i = 0; i < n; ++ i) father[i] = i;
}
// 并查集寻根
int find(int u) {
if(u == father[u]) {
return u;
}
father[u] = find(father[u]);
return father[u];
}
// 将 v -> u 这条边加入并查集
void join(int u, int v) {
u = find(u);
v = find(v);
if(u != v) father[v] = u;
}
// 判断 u 和 v 是否找到同一个根
boolean isSame(int u, int v) {
return find(u) == find(v);
}
public int[] findRedundantConnection(int[][] edges) {
init();
for(int i = 0; i < edges.length; ++ i) {
if(isSame(edges[i][0], edges[i][1])) return edges[i];
else join(edges[i][0], edges[i][1]);
}
return new int[]{};
}
}
题:685. 冗余连接 II
在本问题中,有根树指满足以下条件的 有向 图。该树只有一个根节点,所有其他节点都是该根节点的后继。该树除了根节点之外的每一个节点都有且只有一个父节点,而根节点没有父节点。
输入一个有向图,该图由一个有着 n 个节点(节点值不重复,从 1 到 n)的树及一条附加的有向边构成。附加的边包含在 1 到 n 中的两个不同顶点间,这条附加的边不属于树中已存在的边。
结果图是一个以边组成的二维数组 edges 。 每个元素是一对 [ui, vi],用以表示 有向 图中连接顶点 ui 和顶点 vi 的边,其中 ui 是 vi 的一个父节点。
返回一条能删除的边,使得剩下的图是有 n 个节点的有根树。若有多个答案,返回最后出现在给定二维数组的答案。
示例 1:
输入:edges = [[1,2],[1,3],[2,3]]
输出:[2,3]
示例 2:
输入:edges = [[1,2],[2,3],[3,4],[4,1],[1,5]]
输出:[4,1]
提示:
n == edges.length
3 <= n <= 1000
edges[i].length == 2
1 <= ui, vi <= n
解:
解题思路:
树区别与图的特点是:没有环
(不论是对于有向边还是无向边)
有根树的特点:
- 只有唯一的一个入度为 00 的结点,它是根结点;
- 不是根结点的其它所有的结点入度为 11;
- 不可能存在入度为 22 的结点。
AC代码:
class Solution {
int N = 1005;
int[] parent = new int[N];
// 1.有入度为2(删边检查树) 2.没有入度为2(检测环)
public int[] findRedundantDirectedConnection(int[][] edges) {
// 1.入度统计
int len = edges.length;
int[] inDegree = new int[N];
for(int i = 0; i < len; ++ i) {
inDegree[edges[i][1]] ++;
}
// 2.找入度为2的点,优先要后边的节点,倒序遍历
List<Integer> twoDegree = new ArrayList<>();
for(int i = len - 1; i >= 0; -- i) {
if(inDegree[edges[i][1]] == 2) {
twoDegree.add(i);
}
}
// 存在入度为2的点,一定是两条边删一条
if(!twoDegree.isEmpty()) {
if(isTreeAfterRemoveEdge(edges, twoDegree.get(0))) {
return edges[twoDegree.get(0)];
}
return edges[twoDegree.get(1)];
}
return getRemoveEdge(edges);
}
// 删除一条边后看是不是树
boolean isTreeAfterRemoveEdge(int[][] edges, int deleteEdge) {
init();
for(int i = 0; i < edges.length; ++ i) {
if(i == deleteEdge) continue;
if(find(edges[i][0]) == find(edges[i][1])) { // 构成有向环
return false;
}
join(edges[i][0], edges[i][1]);
}
return true;
}
// 在有向图里找到要删除的边,使其变成树
int[] getRemoveEdge(int[][] edges) {
init();
for(int i = 0; i < edges.length; ++ i) {
if(find(edges[i][0]) == find(edges[i][1])) {
return edges[i];
}
join(edges[i][0], edges[i][1]);
}
return new int[] {};
}
// 初始化并查集
void init() {
for(int i = 0; i < N; ++ i) {
parent[i] = i;
}
}
// 并查集寻根
int find(int u) {
if(u == parent[u]) {
return u;
}
parent[u] = find(parent[u]);
return parent[u];
}
// 将 v -> u 加入并查集
void join(int u, int v) {
u = find(u);
v = find(v);
if(u == v) return;
parent[v] = u;
}
}