AICurator
https://mbd.pub/o/author-aWaWmHBoZA==/work
展开
-
Pointnet++改进:在特征提取模块加入NAMAttention注意力机制,有效涨点
NAMAAttention注意力机制简介:注意力机制是近年来研究的热点之一(Wang et al。[2017],Hu等人[2018],Park等人[2018]、Woo等人[2018]和Gao等人[199])。它有助于深度神经网络抑制不太显著的像素或通道。许多先前的研究都侧重于通过注意操作捕捉显著特征(Zhang等人[2020],Misra等人[2021年])。这些方法成功地利用了来自不同维度特征的相互信息。然而,它们缺乏对权重的贡献因素的考虑,这能够进一步抑制不重要的通道或像素。受Liu等人的启发。原创 2024-01-03 12:46:28 · 1458 阅读 · 0 评论 -
YOLOv5改进:在C3模块不同位置添加SegNext_Attention
我们提出了SegNeXt,一个简单的语义卷积网络架构分割。近年来,基于变换的语义分割模型由于其在空间编码中的自注意性而在语义分割领域占据主导地位信息。在本文中,我们证明了卷积注意是一种更有效的方法变压器中的自注意机制是对上下文信息进行编码的有效途径。通过重新审视成功者所拥有的特点在分割模型中,我们发现了导致分割模型性能改进的几个关键组件。这促使我们去设计一部小说使用廉价卷积运算的卷积注意力网络。原创 2023-12-19 15:18:12 · 757 阅读 · 0 评论 -
YOLOV7改进:在C5模块不同位置添加SegNext_Attention
1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。3.涨点效果:SegNext_Attention注意力机制,实现有效涨点!我们提出了SegNeXt,一个简单的语义卷积网络架构分割。近年来,基于变换的语义分割模型由于其在空间编码中的自注意性而在语义分割领域占据主导地位信息。原创 2023-12-03 21:59:33 · 380 阅读 · 0 评论 -
YOLOV8改进:在C2f模块不同位置添加SegNext_Attention
我们提出了SegNeXt,一个简单的语义卷积网络架构分割。近年来,基于变换的语义分割模型由于其在空间编码中的自注意性而在语义分割领域占据主导地位信息。在本文中,我们证明了卷积注意是一种更有效的方法变压器中的自注意机制是对上下文信息进行编码的有效途径。通过重新审视成功者所拥有的特点在分割模型中,我们发现了导致分割模型性能改进的几个关键组件。这促使我们去设计一部小说使用廉价卷积运算的卷积注意力网络。原创 2023-12-03 21:26:46 · 755 阅读 · 0 评论 -
YOLOV5改进:RefConv | 即插即用重参数化重聚焦卷积替代常规卷积,无额外推理成本下涨点明显
我们提出了重新参数化的重聚焦卷积(RefConv)作为常规卷积层的替代品,常规卷积层是一个即插即用的模块,可以在不需要任何推理成本的情况下提高性能。具体来说,给定一个预先训练的模型,RefConv对从预先训练的模型继承的基核应用一个可训练的重新聚焦转换,以建立参数之间的连接。例如,一个深度级的RefConv可以将卷积核的一个特定通道的参数与另一个核的参数联系起来,也就是说,使它们重新关注它们从未关注过的模型的其他部分,而不是只关注输入特性。原创 2023-11-11 10:26:27 · 786 阅读 · 7 评论 -
YOLOv7改进:RefConv | 即插即用重参数化重聚焦卷积替代常规卷积,无额外推理成本下涨点明显
我们提出了重新参数化的重聚焦卷积(RefConv)作为常规卷积层的替代品,常规卷积层是一个即插即用的模块,可以在不需要任何推理成本的情况下提高性能。具体来说,给定一个预先训练的模型,RefConv对从预先训练的模型继承的基核应用一个可训练的重新聚焦转换,以建立参数之间的连接。例如,一个深度级的RefConv可以将卷积核的一个特定通道的参数与另一个核的参数联系起来,也就是说,使它们重新关注它们从未关注过的模型的其他部分,而不是只关注输入特性。原创 2023-11-11 10:09:38 · 924 阅读 · 1 评论 -
YOLOV8改进:RefConv(即插即用重参数化重聚焦卷积替代常规卷积,无额外推理成本下涨点明显)
我们提出了重新参数化的重聚焦卷积(RefConv)作为常规卷积层的替代品,常规卷积层是一个即插即用的模块,可以在不需要任何推理成本的情况下提高性能。具体来说,给定一个预先训练的模型,RefConv对从预先训练的模型继承的基核应用一个可训练的重新聚焦转换,以建立参数之间的连接。例如,一个深度级的RefConv可以将卷积核的一个特定通道的参数与另一个核的参数联系起来,也就是说,使它们重新关注它们从未关注过的模型的其他部分,而不是只关注输入特性。原创 2023-10-21 20:12:21 · 2133 阅读 · 17 评论 -
YOLOV8改进:动态蛇形卷积,多视角特征融合策略与连续性拓扑约束损失
1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。3.涨点效果:动态蛇形卷积,实现有效涨点!精确分割拓扑管状结构;如血管和道路,是各种至关重要的现场,确保下游的准确性和效率任务。然而,许多因素使任务复杂化,包括薄的局部结构和可变的全局形态。原创 2023-10-08 11:28:59 · 1945 阅读 · 1 评论 -
YOLOV7改进:在C5模块不同位置添加D-LKA Attention(同时拥有SA注意力和大卷积核的能力)
变形模型在医学图像分割方面有了显著的改进,它擅长于捕捉深远的上下文和全局上下文信息。然而,这些模型不断增加的计算需求与平方令牌计数成正比,限制了它们的深度和分辨率能力。目前大多数方法都是逐片处理三维体图像数据(称为伪3D),缺少关键的片间信息,从而降低了模型的整体性能。为了解决这些挑战,我们引入了可变形大核注意(D-LKA注意)的概念,这是一种采用大卷积核来充分理解体积上下文的流线型注意机制。这种机制在类似于自我关注的接受场中运行,同时避免了计算开销。原创 2023-09-14 16:52:23 · 550 阅读 · 0 评论 -
YOLOV5改进:在C3模块不同位置添加D-LKA Attention(同时拥有SA注意力和大卷积核的能力)
变形模型在医学图像分割方面有了显著的改进,它擅长于捕捉深远的上下文和全局上下文信息。然而,这些模型不断增加的计算需求与平方令牌计数成正比,限制了它们的深度和分辨率能力。目前大多数方法都是逐片处理三维体图像数据(称为伪3D),缺少关键的片间信息,从而降低了模型的整体性能。为了解决这些挑战,我们引入了可变形大核注意(D-LKA注意)的概念,这是一种采用大卷积核来充分理解体积上下文的流线型注意机制。这种机制在类似于自我关注的接受场中运行,同时避免了计算开销。原创 2023-09-14 16:46:32 · 626 阅读 · 0 评论 -
YOLOV8改进:在C2f模块不同位置添加D-LKA Attention(同时拥有SA注意力和大卷积核的能力)
变形模型在医学图像分割方面有了显著的改进,它擅长于捕捉深远的上下文和全局上下文信息。然而,这些模型不断增加的计算需求与平方令牌计数成正比,限制了它们的深度和分辨率能力。目前大多数方法都是逐片处理三维体图像数据(称为伪3D),缺少关键的片间信息,从而降低了模型的整体性能。为了解决这些挑战,我们引入了可变形大核注意(D-LKA注意)的概念,这是一种采用大卷积核来充分理解体积上下文的流线型注意机制。这种机制在类似于自我关注的接受场中运行,同时避免了计算开销。原创 2023-09-14 16:26:56 · 978 阅读 · 0 评论 -
YOLOV8改进:TripletAttention | 即插即用的轻量级注意力机制
由于注意机制具有在通道或空间位置之间建立相互依赖关系的能力,近年来在各种计算机视觉任务中得到了广泛的研究和应用。在本文中,我们研究了轻量级但有效的注意机制,并提出了三重注意,这是一种利用三分支结构捕获跨维交互来计算注意权重的新方法。对于输入张量,三元组注意力通过旋转操作建立维度间依赖关系,然后进行残差变换,并以可忽略不计的计算开销对通道间和空间信息进行编码。我们的方法简单高效,可以作为附加模块轻松插入经典骨干网。原创 2023-09-07 20:07:52 · 1062 阅读 · 0 评论 -
YOLOV5/YOLOV7/YOLOV8改进:用于低分辨率图像和小物体的新 CNN 模块SPD-Conv
卷积神经网络(cnn)在图像分类等许多计算机视觉任务中取得了巨大的成功以及目标检测。然而,它们的性能迅速下降当图像分辨率低或物体很小时,更困难的任务。在在本文中,我们指出这源于现有CNN架构中有缺陷但常见的设计,即使用跨行卷积和/或池化层,这会导致细粒度信息的丢失学习不太有效的特征表示。为此,我们提出了一个新的CNN构建块,称为SPD-Conv来代替每个跨步卷积层和每个池化层(因此完全消除了它们)。原创 2023-08-31 17:03:16 · 1814 阅读 · 1 评论 -
YOLOV8改进:更换为MPDIOU,实现有效涨点
边界盒回归(Bounding box regression, BBR)广泛应用于目标检测和实例分割,是目标定位的重要步骤。然而,当预测框与groundtruth盒具有相同的纵横比,但宽度和高度值完全不同时,大多数现有的边界盒回归损失函数都无法优化。为了解决上述问题,我们充分挖掘水平矩形的几何特征,提出了一种新的基于最小点距离的边界盒相似性比较度量MPDIoU,该度量包含了现有损失函数中考虑的所有相关因素,即重叠或不重叠区域、中心点距离、宽度和高度偏差,同时简化了计算过程。原创 2023-08-30 15:58:09 · 1481 阅读 · 6 评论 -
YOLOV7改进:更换WIOU,实现无损涨点
边界盒回归(BBR)的损失函数是目标检测的关键。它的良好定义将为模型带来显著的性能改进。现有的大部分工作都假设训练数据中的样例是高质量的,并着重于增强BBR损失的拟合能力。如果盲目地在低质量样本上加强BBR,将会危及本地化性能。Focal-EIoU v1是为了解决这一问题而提出的,但由于其静态调焦机制(FM),使得非单调调频的潜力没有得到充分发挥。基于这一思想,我们提出了一种基于iou的动态非单调调频损耗,称为Wise-IoU (WIoU)。原创 2023-08-24 15:14:48 · 851 阅读 · 3 评论 -
YOLOV5改进:加入RCS-OSA模块,提升检测速度
凭借速度和精度之间的良好平衡,前沿的YOLO框架已成为最有效的目标检测算法之一。然而,使用YOLO网络在脑肿瘤检测中的性能研究很少。提出了一种新的基于信道Shuffle的重参数化卷积YOLO架构(RCS-YOLO)。我们提出了RCS和RCS的一次聚合(RCS- osa),将特征级联和计算效率联系起来,以提取更丰富的信息并减少时间消耗。在脑肿瘤数据集Br35H上的实验结果表明,该模型在速度和精度上均优于YOLOv6、YOLOv7和YOLOv8。原创 2023-08-15 18:36:23 · 632 阅读 · 7 评论 -
YOLOV7改进:加入RCS-OSA模块,提升检测速度
凭借速度和精度之间的良好平衡,前沿的YOLO框架已成为最有效的目标检测算法之一。然而,使用YOLO网络在脑肿瘤检测中的性能研究很少。提出了一种新的基于信道Shuffle的重参数化卷积YOLO架构(RCS-YOLO)。我们提出了RCS和RCS的一次聚合(RCS- osa),将特征级联和计算效率联系起来,以提取更丰富的信息并减少时间消耗。在脑肿瘤数据集Br35H上的实验结果表明,该模型在速度和精度上均优于YOLOv6、YOLOv7和YOLOv8。原创 2023-08-15 17:58:28 · 706 阅读 · 2 评论 -
YOLOV8改进:加入RCS-OSA模块,提升检测速度
1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。2.涨点效果:RCS-OSA模块更加轻量化,有效提升检测速度!凭借速度和精度之间的良好平衡,前沿的YOLO框架已成为最有效的目标检测算法之一。然而,使用YOLO网络在脑肿瘤检测中的性能研究很少。原创 2023-08-15 17:43:16 · 832 阅读 · 5 评论 -
YOLOV7改进:更换为MPDIOU,实现有效涨点
1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。2.涨点效果:更换为MPDIOU,实现有效涨点!边界盒回归(Bounding box regression, BBR)广泛应用于目标检测和实例分割,是目标定位的重要步骤。原创 2023-08-11 12:21:11 · 1863 阅读 · 2 评论 -
YOLOV5改进:更换为MPDIOU,实现有效涨点
1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。2.涨点效果:更换为MPDIOU,实现有效涨点!边界盒回归(Bounding box regression, BBR)广泛应用于目标检测和实例分割,是目标定位的重要步骤。原创 2023-08-09 16:54:08 · 1046 阅读 · 3 评论 -
YOLOV8改进:更换PoolFormer主干网络
1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。2.涨点效果:添加PoolFormer主干,有效涨点。Transformer已经在计算机视觉中展现了巨大的潜力,一个常见的观念是视觉Transformer之所以取得如此不错的效果主要是由于基于self-attention的token mixer模块。原创 2023-08-01 11:35:06 · 646 阅读 · 0 评论 -
YOLOv7改进:CVPR 2023 | SCConv: 即插即用的空间和通道重建卷积
1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。2.涨点效果:添加 SCConv,经过测试,有效涨点。卷积神经网络(cnn)在各种计算机视觉任务中取得了显著的性能,但这是以巨大的计算资源为代价的,部分原因是卷积层提取冗余特征。最近的作品要么压缩训练有素的大型模型,要么探索设计良好的轻量级模型。原创 2023-07-25 12:13:29 · 969 阅读 · 6 评论 -
YOLOv5改进:CVPR 2023 | SCConv: 即插即用的空间和通道重建卷积
1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。2.涨点效果:添加 SCConv,经过测试,有效涨点。卷积神经网络(cnn)在各种计算机视觉任务中取得了显著的性能,但这是以巨大的计算资源为代价的,部分原因是卷积层提取冗余特征。最近的作品要么压缩训练有素的大型模型,要么探索设计良好的轻量级模型。原创 2023-07-25 11:57:07 · 1980 阅读 · 2 评论 -
YOLOV8改进:CVPR 2023 | SCConv: 即插即用的空间和通道重建卷积
1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。2.涨点效果:添加 SCConv,经过测试,有效涨点。卷积神经网络(cnn)在各种计算机视觉任务中取得了显著的性能,但这是以巨大的计算资源为代价的,部分原因是卷积层提取冗余特征。最近的作品要么压缩训练有素的大型模型,要么探索设计良好的轻量级模型。原创 2023-07-25 11:47:46 · 2030 阅读 · 9 评论 -
YOLOV8改进:在C2f模块不同位置添加GAM注意力机制,有效涨点!
1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。2.涨点效果:添加GAM,经过测试,有效涨点。人们研究了多种注意机制来提高其表现各种计算机视觉任务。然而,先前的方法忽略了保留信息的意义在于渠道和空间两个方面加强跨维度互动。原创 2023-07-20 11:25:34 · 2601 阅读 · 7 评论 -
YOLOV8改进:CVPR2023:加入EfficientViT主干:具级联组注意力的访存高效ViT
视觉变压器由于其高模型能力而取得了巨大的成功。然而,它们卓越的性能伴随着沉重的计算成本,这使得它们不适合实时应用。在这篇论文中,我们提出了一个高速视觉变压器家族,名为EfficientViT。我们发现现有的变压器模型的速度通常受到内存低效操作的限制,特别是在MHSA中的张量重塑和单元函数。因此,我们设计了一种具有三明治布局的新构建块,即在高效FFN层之间使用单个内存绑定的MHSA,从而提高了内存效率,同时增强了信道通信。此外,我们发现注意图在头部之间具有很高的相似性,从而导致计算冗余。原创 2023-07-18 11:51:35 · 2636 阅读 · 8 评论 -
YOLOV8改进:加入对硬件友好的QARepVGG,有效涨点!
1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。2.涨点效果:添加QARepVGG,有效涨点。原创 2023-07-12 11:59:23 · 425 阅读 · 0 评论 -
YOLOV8改进:在C2f模块中添加RepGhostBottleneck模块,有效涨点
1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。2.涨点效果:添加RepGhostBottleneck,减少参数量,有效涨点。特征重用是轻量卷积神经网络设计的关键技术。当前的方法通常利用连接运算符通过重用其他层的特征映射来廉价地保持大通道数(从而增加网络容量)。原创 2023-07-10 11:13:55 · 1171 阅读 · 0 评论 -
YOLOV5改进:添加Wiseiou,有效涨点
【代码】YOLOV5改进:添加Wiseiou,有效涨点。原创 2023-07-08 11:08:28 · 649 阅读 · 2 评论 -
YOLOV8改进:添加Wiseiou,有效涨点
【代码】YOLOV8改进:添加Wiseiou,有效涨点。原创 2023-07-07 13:27:40 · 2024 阅读 · 0 评论 -
YOLOV5/YOLOV8改进:更换Next-vit主干:用于现实工业场景的下一代视觉 Transformer
由于复杂的注意机制和模型设计,大多数现有的视觉变形器(vit)不能像卷积神经网络(cnn)那样高效地执行任务。在实际的工业部署场景中,例如TensorRT和CoreML。这就提出了一个明显的挑战:视觉神经网络能否设计得像cnn一样快并像vit一样强大吗?在这些工作中,我们提出了在现实工业场景中有效部署的下一代视觉变压器,即next - vit,从延迟/精度权衡的角度来看,它在cnn和vit中都占主导地位。原创 2023-07-06 15:58:23 · 617 阅读 · 0 评论 -
YOLOV5/YOLOV8改进:2023 :华为诺亚提出VanillaNet主干网络
基础模型的核心是“越多越好”的哲学,计算机视觉和自然语言处理领域的惊人成功就是例证。然而,优化的挑战和变压器模型固有的复杂性要求范式向简单性转变。在这项研究中,我们介绍了V anillaNet,一种在设计中融入优雅的神经网络架构。通过避免高深度、快捷方式和自我关注等复杂操作,V anillaNet简洁而强大。每一层都经过精心制作,紧凑而直接,在训练后对非线性激活函数进行修剪,以恢复原始架构。V anillaNet克服了固有复杂性的挑战,使其成为资源受限环境的理想选择。原创 2023-07-04 11:37:04 · 1157 阅读 · 6 评论 -
YOLOV5/YOLOV7/YOLOV8改进专栏
手把手教你YOLOV5/YOLOV7/YOLOV8的各种改进方式,订阅可以直接给改进好的源代码。原创 2023-07-04 10:40:25 · 1852 阅读 · 4 评论 -
YOLOV7改进:CVPR 2023 | 在C5模块不同位置添加EMA注意力机制,有效涨点
显著的渠道或空间有效性注意力产生机制更加可辨特征表示用各种计算机进行了说明视觉任务。然而,跨通道建模关系与通道降维可能在提取深度视觉表征时带来副作用。本文提出了一种新的高效多尺度注意力(EMA)方法。模块提出。专注于保留信息每个通道上,并减少计算在上方,我们将部分通道重塑为批处理尺寸并将通道尺寸分组为多个子特征构成空间语义特性在每个特性组中分布良好。具体来说,除了将全局信息编码到重新校准每个平行通道的权重支路,两个并联支路的输出特征为的跨维度交互进一步聚合捕获像素级成对关系。原创 2023-06-27 12:11:36 · 2251 阅读 · 0 评论 -
YOLOV5改进:CVPR 2023 | 在C3块不同位置添加EMA注意力机制,有效涨点
显著的渠道或空间有效性注意力产生机制更加可辨特征表示用各种计算机进行了说明视觉任务。然而,跨通道建模关系与通道降维可能在提取深度视觉表征时带来副作用。本文提出了一种新的高效多尺度注意力(EMA)方法。模块提出。专注于保留信息每个通道上,并减少计算在上方,我们将部分通道重塑为批处理尺寸并将通道尺寸分组为多个子特征构成空间语义特性在每个特性组中分布良好。具体来说,除了将全局信息编码到重新校准每个平行通道的权重支路,两个并联支路的输出特征为的跨维度交互进一步聚合捕获像素级成对关系。原创 2023-06-27 11:59:13 · 1588 阅读 · 1 评论 -
YOLOV8改进:CVPR 2023 | 在C2f模块不同位置添加EMA注意力机制,有效涨点
显著的渠道或空间有效性注意力产生机制更加可辨特征表示用各种计算机进行了说明视觉任务。然而,跨通道建模关系与通道降维可能在提取深度视觉表征时带来副作用。本文提出了一种新的高效多尺度注意力(EMA)方法。模块提出。专注于保留信息每个通道上,并减少计算在上方,我们将部分通道重塑为批处理尺寸并将通道尺寸分组为多个子特征构成空间语义特性在每个特性组中分布良好。具体来说,除了将全局信息编码到重新校准每个平行通道的权重支路,两个并联支路的输出特征为的跨维度交互进一步聚合捕获像素级成对关系。原创 2023-06-27 11:37:20 · 7080 阅读 · 1 评论 -
YOLOV5/YOLOV8改进:CVPR23:加入ConvNeXt V2主干,有效涨点
在改进的架构和更好的表示学习框架的推动下,视觉识别领域在20世纪20年代初实现了快速现代化和性能提升。例如,以ConvNeXt[52]为代表的现代ConvNets在各种场景中都表现出了强大的性能。虽然这些模型最初是为使用ImageNet标签进行监督学习而设计的,但它们也可能受益于自监督学习技术,如掩蔽自动编码器(MAE)。然而,我们发现,简单地将这两种方法结合起来会导致较差的性能。原创 2023-06-09 14:38:31 · 1379 阅读 · 3 评论 -
YOLOV5/YOLOV8改进:CVPR 2022 |EfficientViT:轻量级多尺度关注设备上语义分割
视觉变压器因其较高的模型性能而取得了巨大的成功。然而,它们显著的性能伴随着沉重的计算成本,这使得它们不适合实时应用。在本文中,我们提出了一种被称为高效振动的高速视觉变压器。我们发现,现有的变压器模型的速度通常受到内存低效操作的限制,特别是在MHSA中的张量重塑和元素级函数。因此,我们设计了一个新的具有夹层布局的构建块,即在有效的FFN层之间使用单一内存绑定的MHSA,在提高内存效率的同时提高了信道通信。此外,我们发现注意力图在头部之间有很高的相似性,从而导致计算冗余。原创 2023-05-17 14:09:32 · 2640 阅读 · 3 评论 -
YOLOV8改进:顶刊TIP 2023 | CFP:即插即用的多尺度融合模块,有效涨点!
与现有的方法不同,本文方法不仅关注不同层之间的特征交互,还考虑了同一层内的特征调节,该调节在密集预测任务中被证明是有益的。则依赖于自下而上的特征金字塔结构,通过建立自上而下的路径和横向连接从多尺度高级语义特征图中获取特征信息。提出了一种额外的自下而上路径,使高级特征图也可以从低级特征图中获得足够的细节信息。通过构建多阶段特征金字塔来提取多阶段和多尺度的特征,实现了跨层级和跨层特征融合。特征金字塔网络现代识别系统中的一种基础网络结构,可有效地用于检测不同尺度的物体。和用于汇集局部关键区域的可学习视觉中心。原创 2023-05-06 12:57:38 · 2783 阅读 · 19 评论 -
YOLOV5改进:顶刊TIP 2023 | CFP:即插即用的多尺度融合模块,有效涨点!
的物体检测方法,本文方法基于全局显式的中心特征调节。与现有的方法不同,本文方法不仅关注不同层之间的特征交互,还考虑了同一层内的特征调节,该调节在密集预测任务中被证明是有益的。则依赖于自下而上的特征金字塔结构,通过建立自上而下的路径和横向连接从多尺度高级语义特征图中获取特征信息。提出了一种额外的自下而上路径,使高级特征图也可以从低级特征图中获得足够的细节信息。通过构建多阶段特征金字塔来提取多阶段和多尺度的特征,实现了跨层级和跨层特征融合。是最早使用特征金字塔结构表示多尺度特征信息的方法之一,原创 2023-05-06 12:27:21 · 2421 阅读 · 2 评论