YOLOV8改进:RefConv(即插即用重参数化重聚焦卷积替代常规卷积,无额外推理成本下涨点明显)

本文介绍了YOLOV8的改进方法RefConv,这是一种可替代常规卷积的即插即用模块,无需增加推理成本即可提升模型性能。通过重新参数化重聚焦转换,RefConv能增强预先训练模型的表征能力,实验显示在ImageNet上精度提升1.47%。文章详细阐述了RefConv的实现步骤,包括代码实现和配置文件修改。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。
2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点

3.涨点效果:RefConv,实现有效涨点!

论文地址

目录

1.步骤一

2.步骤二

3.步骤三

 

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AICurator

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值