LSTM改进8:使用L2范数特征选择优化,提高训练效果

目录

改进方式介绍:

步骤一

步骤二

步骤三


改进方式介绍:

步骤一

添加data_decomposition.py,加入如下代码:

### L2范数特征选择
class L2_FeatureSelector:
    """
    L2范数特征选择器(权重比例阈值法改进版)
    功能:
    1. 基于岭回归自动选择正则化参数
    2. 根据权重比例阈值动态筛选特征
    3. 支持权重标准化和特征排序

    参数:
    threshold_ratio : 权重比例阈值(0-1)
    alphas : 正则化参数范围(默认1e-3到1e3对数空间)
    cv : 交叉验
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AICurator

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值