状态压缩DP--------蒙德里安的梦想

> 状态压缩DP--------蒙德里安的梦想

求把 N×M 的棋盘分割成若干个 1×2 的的长方形,有多少种方案。

例如当 N=2,M=4 时,共有 5 种方案。当 N=2,M=3 时,共有 3 种方案。

如下图所示:

在这里插入图片描述

输入格式
输入包含多组测试用例。

每组测试用例占一行,包含两个整数 N 和 M。

当输入用例 N=0,M=0 时,表示输入终止,且该用例无需处理。

输出格式
每个测试用例输出一个结果,每个结果占一行。

数据范围
1≤N,M≤11
输入样例:
1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0

输出样例:
1
0
1
2
3
5
144
51205

#include<bits/stdc++.h>
using namespace std;

const int N=12, M = 1<< N;  

long long f[N][M] ;// 第一维表示列, 第二维表示所有可能的状态

bool st[M];  //存储每种状态是否有奇数个连续的0,如果奇数个0是无效状态,如果是偶数个零置为true。

vector<int > state[M];  //二维数组记录合法的状态
//vector<vector<int>> state(M);  //两种写法等价:二维数组

int m , n;

int main(){

    while(cin>>n>>m, n||m){ //读入n和m,并且不是两个0即合法输入就继续读入

        //第一部分:预处理1
        //对于每种状态,先预处理每列不能有奇数个连续的0
        //为什么可以预处理:对于每一列的每一种状态(j从0-31),它是否合理(不存在连续奇数个0)我们都可以预先计算出来,所以可以预处理 

        for(int i=0; i< 1<<n; i++){//遍历每一列列的所有可能的状态,也就是j的值 0-31

            int cnt =0 ;//记录连续的0的个数

            bool isValid = true; // 某种状态没有奇数个连续的0则标记为true

            for(int j=0;j<n;j++){ //遍历这一列,从上到下

                 if( i>>j &1){  //i>>j位运算,表示i(i在此处是一种状态)的二进制数的第j位; &1为判断该位是否为1,如果为1进入下一层if
                    if(cnt & 1) { //i的第j位为1,看前面连续的0的个数,如果是奇数(cnt & 1为真)则该状态不合法
                    														//奇数的二进制形式最低位全为1 
                        isValid =false;
						break;
                    } 
                    cnt=0; // 既然该位是1,并且前面不是奇数个0(经过上面的if判断),计数器清零。//其实清不清零没有影响
                 }
                 else 
				 	cnt++; //否则的话该位还是0,则统计连续0的计数器++。
            }
            //当直到最后都没有上一列突出来的小尖时,这种情况循环里面无法判断,所以要补充判断 
            if(cnt &1)  
				isValid =false; //最下面的那一段判断一下连续的0的个数

            st[i]  = isValid; //状态i是否有奇数个连续的0的情况,输入到数组st中
        }

        //第二部分:预处理2
        // 经过上面每种状态 连续0的判断,已经筛掉一些状态。
        //下面来看进一步的判断:看第i-2列伸出来的和第i-1列伸出去的是否冲突

        for(int j=0;j< 1<<n;j++){ //对于第i列的所有状态
            state[j].clear(); //清空上次操作遗留的状态,防止影响本次状态。
            for(int k=0;k< 1<<n;k++){ //对于第i-1列的所有状态
                if((j&k )==0 && st[ j | k] ) // 第i-2列伸出来的 和第i-1列伸出来的不冲突(不在同一行,也就是j和k不同时为1) 
                //解释一下st[j | k] 	 
                //已经知道st[]数组表示的是这一列没有连续奇数个0的情况,
                //我们要考虑的是第i-1列(第i-1列是这里的主体)中从第i-2列横插过来的,还要考虑自己这一列(i-1列)横插到第i列的
                //比如 第i-2列插过来的是k=10101,第i-1列插出去到第i列的是 j =01000,
                //那么合在第i-1列,到底有多少个1呢?自然想到的就是这两个操作共同的结果:两个状态或。 j | k = 01000 | 10101 = 11101
                //这个 j|k 就是当前 第i-1列的到底有几个1,即哪几行是横着放格子的

                    state[j].push_back(k);  //二维数组state[j]表示第j行, 
                    //j表示 第i列“真正”可行的状态,如果第i-1列的状态k和j不冲突则压入state数组中的第j行尾部。
                    //“真正”可行是指:既没有前后两列伸进伸出的冲突;又没有连续奇数个0。
            }

        }

        //第三部分:dp开始

        memset(f,0,sizeof f);  //全部初始化为0,因为是连续读入,这里是一个清空操作。类似上面的state[j].clear()

        f[0][0]=1 ;// 这里需要回忆状态表示的定义,按定义这里是:前第-1列都摆好,且从-1列到第0列伸出来的状态为0的方案数。
        //首先,这里没有-1列,最少也是0列。其次,没有伸出来,即没有横着摆的。即这里第0列只有竖着摆这1种状态。

        for(int i=1;i<= m;i++){ //遍历每一列:第i列合法范围是(0~m-1列)
            for(int j=0; j< 1<<n; j++){  //遍历当前列(第i列)所有状态j
                for( auto k : state[j])    // 遍历第i-1列的状态k,如果“真正”可行(第i-1列的所有状态k和第i列的当前状态j满足条件时),就转移
                    f[i][j] += f[i-1][k];    // 当前列的方案数就等于之前的第i-1列所有状态k的累加。
            }
        }

        //最后答案是什么呢?
        //f[m][0]表示 前m-1列都处理完,并且第m-1列没有伸出来的所有方案数。
        //即整个棋盘处理完的方案数

        cout<< f[m][0]<<endl;
    }
}  

相对原文稍加了些注释。

作者:lishizheng
链接:https://www.acwing.com/solution/content/28088/
来源:AcWing

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值