考虑局部遮阴的光伏PSO-MPPT控制模型(Simulink仿真实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 仿真模型搭建

2.2 PSO-MPPT

2.3 U/V特性曲线

2.4 输出功率

🎉3 参考文献

🌈4 Simulink仿真实现


💥1 概述

光伏电池阵列的输出特性曲线呈现非线性变化。在光伏电池被遮挡时,产生的功率会不断波动,导致光伏电池阵列的输出功率也在不断变化,呈现出多峰值的特征。

多峰值最大功率点跟踪(MPPT)技术的出现是由光伏发电系统失配问题引起的。当光伏发电系统失配时,其功率-电压输出特性曲线会呈现多个峰值,传统的单峰值MPPT控制算法可能只能追踪到局部最大功率点,而非全局最大功率点,导致算法失效,从而降低光伏发电系统的输出功率和效率。

传统的光伏MPPT算法,如扰动观察法和电导增量法等,由于其原理缺陷,在太阳辐照不均匀的情况下容易陷入局部最优解。为了解决这一问题,近年来,国内外研究者通过学习粒子群优化(PSO)算法,对光伏阵列的MPPT进行了大量研究。

粒子群算法的参数设置对算法的收敛时间和精度有直接影响。合理设置参数可以满足具体目标要求,下面详细介绍了粒子群算法中参数的设置规则:

1. 种群规模N:种群规模的大小直接影响算法的收敛时间。N较小会导致较短的收敛时间,但可能陷入局部最优解;N较大会增加算法复杂度,但能提高精确性。

2. 粒子的最大速度Vmax:Vmax较大会加快算法优化速度,但可能导致越过最优值。Vmax较小不会错过最优解,但搜索速度较慢且难以摆脱局部最优,降低算法效率。

3. 惯性权重w:惯性权重是粒子群算法中最重要的参数,决定了当前粒子速度对上一代粒子的影响。采用自适应惯性权重可以平衡局部和全局搜索能力。

4. 学习因子c1和c2:c1和c2分别反映粒子趋向个体和全局最优的比重。学习因子较小时,粒子会被拉回目标区域;较大时,搜索速度过快可能导致越过目标区域。

5. 空间维数E:决定了问题的变量个数和空间维度。

6. 适应度函数:通常将目标函数设为适应度函数。

通过粒子群算法寻找光伏阵列系统的最大功率点,将目标函数设定为光伏阵列系统的输出总功率,粒子的位置表示光伏阵列的输出电压值。

📚2 运行结果

2.1 仿真模型搭建

2.2 PSO-MPPT

2.3 U/V特性曲线

2.4 输出功率

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]高震.光伏发电系统中多峰值MPPT控制算法研究[D].湖北工业大学,2021.DOI:10.27131/d.cnki.ghugc.2021.000499.

[2]曹举.基于多峰值MPPT光伏并网系统控制策略的研究[D].陕西科技大学,2019.

[3]赵娟.基于改进MPPT算法的局部阴影光伏阵列系统的研究[D].哈尔滨理工大学,2020.DOI:10.27063/d.cnki.ghlgu.2020.000187.

🌈4 Simulink仿真实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值