一、伴随矩阵
重要公式
现假设A的行列式!=0,则有:
A的逆矩阵,伴随矩阵,行列式知二求一
求伴随矩阵绝对不能对原矩阵做任何初等变换。
二阶矩阵的伴随矩阵:直接写答案
主对角线元素交换位置,副对角线变相反数。
二、可逆矩阵
定理一:
证明该定理:
* * * 单位矩阵恒等变形 * * *
定理二:
证明:
把
读成B,就是AB = BA = E,就成了矩阵可逆的定义。
几个小公式:
> 转置与逆公式对比:
二、计算可逆矩阵
- 1、通过伴随矩阵来求
- 2、构造新矩阵,通过初等变换求
例题:
要点:(以三阶矩阵为例)- 第一行往下加,加出两个0;
- 第二行往下加,加出一个0;
- 此时变成了上三角;
- 第三行往上加,加出两个0;
- 第二行往上加,加出一个0;
- 此时变成对角矩阵;
- 某行乘k,变成单位矩阵;
例题:
解:
学会把数挑出来
转圈思想
解析:
A可以往后转,C也可以往前转
分组因式分解
既然要求(A - E)的逆矩阵,那我们要研究的就是(A - E)和“谁”相乘=E,我们要求的就是这个“谁”,所以我们就去构造(A - E)*“谁” = E。
解:
解:
单位矩阵恒等变形
添加单位矩阵:前面添一个,后面添一个。
解:
例题:
凑数:
例题:
- 两个括弧两种对策,第一个括弧没有公式,所以想到单位矩阵变形,E = AA逆 (或A逆A)
- 根据已知条件