李永乐(三)伴随矩阵、可逆矩阵——笔记

一、伴随矩阵

在这里插入图片描述
重要公式
在这里插入图片描述

现假设A的行列式!=0,则有:
在这里插入图片描述
A的逆矩阵,伴随矩阵,行列式知二求一
求伴随矩阵绝对不能对原矩阵做任何初等变换。

二阶矩阵的伴随矩阵:直接写答案
主对角线元素交换位置,副对角线变相反数。在这里插入图片描述
在这里插入图片描述

二、可逆矩阵

在这里插入图片描述

定理一:
在这里插入图片描述
证明该定理:
在这里插入图片描述
* * * 单位矩阵恒等变形 * * *
在这里插入图片描述

定理二:
在这里插入图片描述
证明:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
读成B,就是AB = BA = E,就成了矩阵可逆的定义。

几个小公式:

在这里插入图片描述

> 转置与逆公式对比:

在这里插入图片描述

二、计算可逆矩阵

  • 1、通过伴随矩阵来求
  • 2、构造新矩阵,通过初等变换求
    在这里插入图片描述
    例题:
    在这里插入图片描述
    在这里插入图片描述
    要点:(以三阶矩阵为例)
  • 第一行往下加,加出两个0;
  • 第二行往下加,加出一个0;
  • 此时变成了上三角;
  • 第三行往上加,加出两个0;
  • 第二行往上加,加出一个0;
  • 此时变成对角矩阵;
  • 某行乘k,变成单位矩阵;

例题:
在这里插入图片描述解:
学会把数挑出来在这里插入图片描述

转圈思想
在这里插入图片描述
解析:
在这里插入图片描述
A可以往后转,C也可以往前转

分组因式分解
在这里插入图片描述
既然要求(A - E)的逆矩阵,那我们要研究的就是(A - E)和“谁”相乘=E,我们要求的就是这个“谁”,所以我们就去构造(A - E)*“谁” = E。
在这里插入图片描述

在这里插入图片描述
解:
在这里插入图片描述

在这里插入图片描述
解:
在这里插入图片描述
在这里插入图片描述

单位矩阵恒等变形
添加单位矩阵:前面添一个,后面添一个。
在这里插入图片描述
解:
在这里插入图片描述

例题:
在这里插入图片描述
凑数:
在这里插入图片描述

例题:
在这里插入图片描述

  • 两个括弧两种对策,第一个括弧没有公式,所以想到单位矩阵变形,E = AA逆 (或A逆A)
  • 根据已知条件
    在这里插入图片描述
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值