题目链接:https://www.acwing.com/problem/content/849/
题目
给定一个
n
n
n 个点
m
m
m 条边的有向图,图中可能存在重边和自环。
所有边的长度都是 1 1 1,点的编号为 1 ∼ n 1∼n 1∼n。
请你求出 1 1 1 号点到 n n n 号点的最短距离,如果从 1 1 1 号点无法走到 n n n 号点,输出 − 1 −1 −1。
重心定义:重心是指树中的一个结点,如果将这个点删除后,剩余各个连通块中点数的最大值最小,那么这个节点被称为树的重心。
输入格式
第一行包含两个整数
n
n
n 和
m
m
m。
接下来 m 行,每行包含两个整数 a a a 和 b b b,表示存在一条从 a a a 走到 b b b 的长度为 1 1 1 的边。
输出格式
输出一个整数,表示
1
1
1 号点到
n
n
n 号点的最短距离。
数据范围
1
≤
n
,
m
≤
1
0
5
1≤n,m≤10^5
1≤n,m≤105
输入样例:
4 5
1 2
2 3
3 4
1 3
1 4
输出样例:
1
思路:用邻接表来存储树或图,稍微改一下BFS模板即可
先把第一个点入队,然后每次把队头取出来,把队头能到达的点拓展入队即可
AC代码
#include <iostream>
#include <cstring>
using namespace std;
const int N = 100010,M = N * 2;
int n,m,idx;
int h[N],e[M],ne[M];
int d[N],q[N]; // d表示从点1到该点的距离,q为队列
void add(int a,int b)
{
e[idx] = b;
ne[idx] = h[a];
h[a] = idx++;
}
int bfs()
{
d[1] = 0;
q[0] = 1;
int hh = 0,tt = 0; // 模拟链表hh初始值为0,tt为-1,因为这里先把第一个点存进来了,所以tt = 0
while(hh <= tt)
{
int t = q[hh++];
for(int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if(d[j] == -1) // 没有记录过距离
{
q[++tt] = j; // 将t能到达的点入队
d[j] = d[t] + 1;
}
}
}
return d[n];
}
int main()
{
cin >> n >> m;
memset(d,-1,sizeof(d));
memset(h,-1,sizeof(h));
for(int i = 0; i < m; i++)
{
int a,b;
cin >> a >> b;
add(a,b);
}
bfs();
printf("%d\n",d[n]);
return 0;
}