树与图的广度优先遍历模板

这篇博客介绍了如何利用广度优先搜索(BFS)算法解决含有重边和自环的有向图中,从1号点到n号点的最短路径问题。在给定的邻接表数据结构中,通过BFS模板进行修改,找到从起点到终点的最短距离。当1号点无法到达n号点时,输出-1。提供的AC代码实现了这一过程。
摘要由CSDN通过智能技术生成

题目链接:https://www.acwing.com/problem/content/849/

题目
给定一个 n n n 个点 m m m 条边的有向图,图中可能存在重边和自环。

所有边的长度都是 1 1 1,点的编号为 1 ∼ n 1∼n 1n

请你求出 1 1 1 号点到 n n n 号点的最短距离,如果从 1 1 1 号点无法走到 n n n 号点,输出 − 1 −1 1

重心定义:重心是指树中的一个结点,如果将这个点删除后,剩余各个连通块中点数的最大值最小,那么这个节点被称为树的重心。

输入格式
第一行包含两个整数 n n n m m m

接下来 m 行,每行包含两个整数 a a a b b b,表示存在一条从 a a a 走到 b b b 的长度为 1 1 1 的边。

输出格式
输出一个整数,表示 1 1 1 号点到 n n n 号点的最短距离。

数据范围
1 ≤ n , m ≤ 1 0 5 1≤n,m≤10^5 1n,m105

输入样例:

4 5
1 2
2 3
3 4
1 3
1 4

输出样例:

1
思路:

用邻接表来存储树或图,稍微改一下BFS模板即可
先把第一个点入队,然后每次把队头取出来,把队头能到达的点拓展入队即可

AC代码

#include <iostream>
#include <cstring>

using namespace std;

const int N = 100010,M = N * 2;

int n,m,idx;
int h[N],e[M],ne[M];
int d[N],q[N]; // d表示从点1到该点的距离,q为队列

void add(int a,int b)
{
    e[idx] = b;
    ne[idx] = h[a];
    h[a] = idx++;
}


int bfs()
{
    d[1] = 0;
    q[0] = 1;
    int hh = 0,tt = 0; // 模拟链表hh初始值为0,tt为-1,因为这里先把第一个点存进来了,所以tt = 0
    while(hh <= tt)
    {
        int t = q[hh++];
        for(int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if(d[j] == -1) // 没有记录过距离
            {
                q[++tt] = j; // 将t能到达的点入队
                d[j] = d[t] + 1;
            }
        }
    }
    return d[n];
}

int main()
{
    cin >> n >> m;
    memset(d,-1,sizeof(d));
    memset(h,-1,sizeof(h));
    for(int i = 0; i < m; i++)
    {
        int a,b;
        cin >> a >> b;
        add(a,b);
    }
    bfs();
    printf("%d\n",d[n]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值