【3.图与搜索-模板】4.树与图的广度优先遍历(模板)

1.图中点的层次

#include <cstring>
#include <iostream>

using namespace std;

const int N=1e5+10;

int h[N], e[N], idx, ne[N];//e[i]存储图中的下标
int d[N]; //存储每个节点离起点的距离  d[1]=0
int n, m; //n个节点m条边
int q[N]; //存储层次遍历序列 0号节点是编号为1的节点

/*
4 5
1 2
2 3
3 4
1 3
1 4

e[0]=5,ne[0]=h[4]=-1,h[4]=0,idx=1;
//e[1]=2,ne[1]=h[1]=-1,h[1]=1,idx=2;
e[2]=3,ne[2]=h[2]=-1,h[2]=2,idx=3;
e[3]=4,ne[3]=h[3]=-1,h[3]=3,idx=4;
//e[4]=3,ne[4]=h[1]=1,h[1]=4,idx=5;
//e[5]=4,ne[5]=h[1]=4,h[1]=5,idx=6;

t=1;
i=h[1]=5;ne[5]=4;ne[4]=1;ne[1]=-1;
e[h[1]]=4;e[4]=3;e[1]=2;
1  //    4     3     2     
[] //    5     4     1      -1

t=2;
i=h[2]=2;ne[2]=-1
e[2]=3;
2  //   3
[] //   2


*/
void add(int a, int b)
{
    e[idx]=b;
    ne[idx]=h[a];
    h[a]=idx;
    idx++;
}

int bfs()
{
    int hh=0,tt=0;
    q[0]=1; //0号节点是编号为1的节点
    memset(d,-1,sizeof d);
    d[1]=0; //存储每个节点离起点的距离

    //队列不为空时
    while(hh<=tt)
    {
        //取出队列头元素并且弹出队头
        int t=q[hh++];


        //遍历t节点的每一个邻边
        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            //如果j没有被扩展过
            if(d[j]==-1)
            {
                d[j]=d[t]+1; //d[j]存储j节点离起点的距离,并标记为访问过
                q[++tt] = j; //把j结点加入队列
            }
        }
    }

    return d[n];
}


int main()
{
    cin>>n>>m;
    memset(h,-1,sizeof h);
    for(int i=0;i<m;i++)
    {
        int a,b;
        cin>>a>>b;
        add(a,b);
    }
    cout<<bfs()<<endl;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿斯卡码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值