【文献阅读】自适应联邦优化

        在这项工作中,提出了联邦版本的自适应优化器,包括ADAGRAD、ADAM和YOGI,并分析了它们在一般非凸设置的异构数据存在时的收敛性。


        经典三假设,分别是Lipschitz梯度,随机梯度方差有界,梯度值有界:

         中间定义了一些符号表达,诸如权重参数x的表示,伪梯度的表示等等。然后以下就是算法:

        可以看出最重要的部分就是ClientOpt和ServerOpt这两个函数,这两个函数可以替代很多的操作。这让这个FedOpt算法成为一个框架。在接下来我们可以看到,ClientOpt函数多是SGD随机梯度优化,而ServerOpt可以有很多选择。

        以下为算法的伪代码:

         其中\tau控制了算法的自适应程度,越小代表自适应程度越高。\Delta^t_i储存了本地在一个本地周期内,权重的变化量。\Delta_t是各个客户变化量的平均。比较重要的是m_tv_t的计算:

  •         m_t被定义为\Delta_t的动量,由\beta_1控制动量比例。
  •         v_t则随优化方法而变化,以实现自适应的功能。 

 

横向联邦学习在不同行业应用时,面临的挑战主要包括数据非均匀分布和通信效率问题。数据非均匀分布意味着不同参与方的数据集规模和特征分布可能差异显著,这会导致模型训练效果不均衡。为了解决这个问题,研究者们提出了多种策略,如数据采样方法、权重调整算法以及分层聚合机制等。例如,在医疗领域,可以通过对不同医院的数据进行预处理,使得模型训练更加均衡;在金融风控中,则可以通过调整各银行数据权重,以确保模型的泛化能力。 参考资源链接:[横向联邦学习:最新研究、应用与前景](https://wenku.csdn.net/doc/1zcsa7hyfp?spm=1055.2569.3001.10343) 另外,通信效率是横向联邦学习中的一个关键问题,特别是在大规模分布式系统中,频繁的模型参数交换可能导致巨大的延迟。为提高通信效率,可以采用差分隐私和安全多方计算等技术来降低通信成本,同时保证数据隐私和模型的准确性。此外,近年来出现的梯度压缩技术也是一种有效的解决办法,它通过只传输模型梯度的压缩版本来减少通信量。例如,Google的FedOpt算法就对减少通信次数做出了创新。 为了深入理解和解决这些挑战,建议参阅《横向联邦学习:最新研究、应用与前景》一文。该文献深入探讨了横向联邦学习的现状、应用和挑战,并提供了多种应对策略,有助于您全面理解这一领域的前沿进展。 参考资源链接:[横向联邦学习:最新研究、应用与前景](https://wenku.csdn.net/doc/1zcsa7hyfp?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值