Federated Learning Challenges, Methods, and Future Directions
本文讨论了联邦学习的独特特征和挑战,提供了当前方法的广泛概述,并概述了与广泛的研究社区相关的未来工作的几个方向。
-
背景:现代分布式网络中的设备(如移动电话、可穿戴设备和自动驾驶汽车等)每天会产生大量数据,由于这些设备的计算能力不断增强,以及对传输私人信息的担忧,在本地存储数据并将网络计算推向边缘的需求日益增加。
-
概念:联邦学习是直接在远程设备上训练统计模型的一种学习方式,它与传统的分布式环境不同,需要在隐私、大规模机器学习和分布式优化等领域取得根本性的进展。
-
核心挑战:
- 昂贵的通信:联邦网络中的通信是一个关键瓶颈,需要开发高效的通信方法,以减少通信轮数和降低每轮传输消息的大小。
- 系统异构性:联邦网络中设备的存储、计算和通信能力存在差异,且只有一小部分设备同时活跃,设备也可能不可靠,因此联邦学习方法需要考虑这些因素。
- 统计异构性:设备生成和收集的数据通常是非独立同分布的,这违反了分布式优化中常用的假设,增加了训练的复杂性,同时也需要考虑个性化或设备特定的建模。
- 隐私问题:联邦学习中的隐私问题是一个主要关注点,虽然通过共享模型更新(如梯度信息)而不是原始数据来保护每个设备上生成的数据,但通信模型更新仍可能泄露敏感信息,如何在理论和实践上理解和平衡隐私与模型性能、系统效率之间的权衡是一个挑战。
上图是联邦学习在移动电话上的下一个单词预测任务的示例应用。为了保护文本数据的隐私并减少网络上的压力,作者试图以分布式方式训练预测器,而不是将原始数据发送到中央服务器。
1.1 Problem Formulation
在联邦学习的问题表述(Problem Formulation)中,核心公式为:
其中各符号的含义如下:
-
m :表示远程设备的总数。 m:表示远程设备的总数。 m:表示远程设备的总数。
-
p k :表示第个设备的相对影响权重。 p_k:表示第个设备的相对影响权重。 pk:表示第个设备的相对影响权重。
-
F k ( w ):表示第 k 个设备的本地目标函数。 F_k(w):表示第k个设备的本地目标函数。 Fk(w):表示第k个设备的本地目标函数。
-
w :模型的参数。 w:模型的参数。