原地旋转数组--189. 轮转数组

189. 轮转数组

给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。

示例 1:

输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右轮转 1 步: [7,1,2,3,4,5,6]
向右轮转 2 步: [6,7,1,2,3,4,5]
向右轮转 3 步: [5,6,7,1,2,3,4]

示例 2:

输入:nums = [-1,-100,3,99], k = 2
输出:[3,99,-1,-100]
解释: 
向右轮转 1 步: [99,-1,-100,3]
向右轮转 2 步: [3,99,-1,-100]

提示:

  • 1 <= nums.length <= 105
  • -231 <= nums[i] <= 231 - 1
  • 0 <= k <= 105

进阶:

  • 尽可能想出更多的解决方案,至少有 三种 不同的方法可以解决这个问题。
  • 你可以使用空间复杂度为 O(1) 的 原地 算法解决这个问题吗?
class Solution {
public:
//切片法
    void rotate(vector<int>& nums, int k) {
        if(nums.size()==0||nums.size()==1) return ;
        vector<int> vec1;
        vector<int> vec2;
        if(k>nums.size()) k%=nums.size();//轮转位置比数组长
        vec1.assign(nums.begin(),nums.begin()+nums.size()-k);//vec1=nums的0到nums.size()-k位置的所有元素
        vec2.assign(nums.begin()+nums.size()-k,nums.end());
        // 在vec2的末尾插入vec1的所有元素
        vec2.insert(vec2.end(), vec1.begin(), vec1.end());
        for(int i=0;i<nums.size();i++){
            nums[i]=vec2[i];
        }
        
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

 


进阶:空间复杂度如何达到O(1)呢?

 

class Solution {
public:
//原地旋转
    void reverse(vector<int>& nums, int start, int end) {
        while (start < end) {
            swap(nums[start], nums[end]);
            start += 1;
            end -= 1;
        }
    }
    void rotate(vector<int>& nums, int k) {
        k %= nums.size();
        reverse(nums, 0, nums.size() - 1);
        reverse(nums, 0, k - 1);
        reverse(nums, k, nums.size() - 1);
    }
};

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值